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Here, the possibility of a noniterative solution to the phase retrieval problem is explored. A new look is
taken at the phase retrieval problem that reveals that knowledge of a diffraction pattern’s frequency
components is enough to recover the image without projective iterations. This occurs when the image
is formed using Gaussian bases that give the convenience of a continuous Fourier transform existing
in a compact form where square pixels do not. The Gaussian bases are appropriate when circular
apertures are used to detect the diffraction pattern because of their optical transfer functions, as dis-
cussed briefly. An algorithm is derived that is capable of recovering an image formed by Gaussian bases
from only the Fourier transform’s modulus, without background constraints. A practical example is
shown. © 2013 Optical Society of America
OCIS codes: (070.6020) Continuous optical signal processing; (100.3190) Inverse problems;

(100.5070) Phase retrieval; (110.2990) Image formation theory; (100.3175) Interferometric imaging;
(110.3175) Interferometric imaging.
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1. Introduction

In the fields of imaging with application to
astronomy and crystallography, phase retrieval has
received much attention over the past decades, due
to increases in computational power. The phase
retrieval problem is a nonlinear estimation problem
where the magnitude values of the Fourier transform
of a 2D image are known but the phase values of the
Fourier transform are unknown. The phase values
must thus be estimated to recover the original image.

Many methods of phase retrieval are based on the
work of Gerchberg and Saxton’s error-reduction (ER)
method [1]. The ER method is an iterative method
that projects from the image domain to the Fourier
domain and back, and imposes constraints upon each
projection. Namely, the image is constrained to have
real, positive pixel values and to have finite support.
Thus, at every iteration some portion of the image is
constrained to have zero pixel values. The Fourier

domain of the image is constrained to have a modu-
lus value equivalent to the given squared coherence
data. It has been shown for many cases that iterative
projections onto the two constrained spaces can
provide a viable estimate of the missing phase.
The algorithm, however, is notoriously susceptible
to local minima in its error metric; i.e., it stagnates
before converging to a reasonable estimate of the
true image [2].

Fienup devised a modification called the hybrid
input–output (HIO) method, where the image back-
ground constraint was modified [3,4]. Instead of
rigidly constraining the background to have zero
pixel values, a step is taken toward imposing the con-
straint based on the previous iteration’s estimate.
The result was a vast improvement over the ER
method. The HIO method has become the field’s
standard method and the basis of comparison for
most ongoing phase retrieval research.

Since the introduction of the ER and HIOmethods,
many additional modifications have been proposed to
further increase the robustness of the estimator and
to prevent stagnation. These modifications include
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estimation techniques for the background/support
region as discussed in [5–7]. Much attention has been
placed on the development of more creative gradient
steps than what is used in the HIO method that can
escape local minima [8], such as the difference map
[9], averaged successive reflections [10], hybrid pro-
jection reflection [11], relaxed averaged alternating
reflection [12], and constraint relaxation [13] to
name a few. The inner workings of these methods
are based on nonlinear estimation and function min-
imization techniques [14–17]. Explanations for the
existence of the troublesome local minima have been
offered, such as the existence of solutions convoluted
with amirror image of the solution [2]. Requirements
have been formulated for the amount of oversam-
pling required for 2D phase retrieval to have a
unique solution [7]. Additionally, some papers have
discussed the HIO method’s performance and
offered modifications for when the input Fourier
modulus data suffers from low signal-to-noise levels
[4,13,18–22].

In the fields of crystallography, x-ray diffraction
imaging, and holography several approaches have
been developed outside the HIO method’s frame-
work. Some methods, such as [23], use a CCD and
a phase plate. This method is able to produce re-
markable, experimentally validated results for arbi-
trary complex-valued images; however, its current
application has only been demonstrated for very
small length scales. Similarly, the discussions in [24]
employ a mask and a CCD and produce very good re-
sults at small length scales. Many of these methods
involve hardware and data collection methods not
suitable for capturing astronomical bodies, as is the
primary interest of the discussion here. Astronomical
interferometry techniques often require baselines on
the meter length scale and larger [25–27], which is
not yet feasible for the aforementioned methods.
Also, in the case for a body such as a rotating aste-
roid [28], multiple data records would not be practi-
cal as the object’s appearance changes throughout
time.

All of the methods based on the ER, HIO, and vari-
ous projection methods, however, seem to suffer the
same fates. Improved image resolution results in
much longer computation times, since two fast
Fourier transforms (FFTs) are performed at each
iteration, each scaling as N log N for a dimension
of the image having N pixels (exact scaling depends
on the FFT algorithm but all have nonlinear growth
with dimensionality). The Fourier domain measure-
ments must be somewhat continuous, not sparse,
which makes use of the HIO method in practical ap-
plications difficult. The HIO method and especially
many of its variants have parameters that the user
must adjust from one application to another, which
adds some “art” to the process. In a truly blind test
there is no definitive metric to determine whether
the output image is correct or not. Finally, and most
disconcertingly, because of the use of two FFTs in the
algorithm iterations, there is very little possibility of

an analytical solution to the phase retrieval problem
existing within the ER or HIO frameworks.

In an attempt to overcome these several downfalls
of HIO-based phase retrieval, the original concept of
an image is revisited. In the HIOmethod, an image is
thought of as a 2D, discrete array of numbers. This
grid of numbers can be transformed from the image
domain to the Fourier domain via a FFT; however,
the question can be posed, “Why is everything
treated as discrete?” If a better image has a higher
resolution, i.e., smaller pixels, wouldn’t the true
image be continuous? This idea has led to research
in the field of super resolution, which has its own
set of challenges [29]. Here, a fresh look is taken with
emphasis placed on maintaining continuity in the
image rather than worrying about resolution. An
image is considered continuous and any discrete
representation of that image is a “sampling” of the
continuous image. For this reason the use of pixels
must be questioned [30].

To introduce this new look at phase retrieval, the
continuous nature of an image, and how it can be
sampled to be represented as discrete, is analyzed.
Next, attention is transferred to an image’s inher-
ently continuous nature when a finite aperture is
used for data acquisition. Finally, based on the in-
sight of these discussions, a phase retrieval method
is introduced that makes use of a continuous imaging
framework and contains the potential for a noniter-
ative phase solution for arbitrary geometries in im-
ages. An example using this new method is shown.

A. Pixels versus Gaussians

With modern computers, viewing, capturing, and
editing images is extremely easy. Using some sort
of graphics user interface (GUI), the user can edit
pixel values across a 2D image with the click of a
mouse. Often, the image is displayed in a manner
that permits zooming to see the individual pixels
and allow for precise editing. Upon zooming, almost
all software represents pixels as squares that make
up a grid, with each having a specific color value.
Because the focus here is to create an image of a real
object through phase retrieval of diffraction pattern
information, the underlying concept of a digital
image should be revisited.

If perfect data were acquired to represent a scene
as an image, the resolution would be infinite and
yield a continuous image. The image should, thus,
be thought of as a continuous function in 2D space.
In practice, this continuous function’s value is only
known at specific points, giving the need to interpo-
late to recover the original continuous image. Two
of the most common techniques in computer graphics
for changing the resolution of an image are nearest-
neighbor and bilinear sampling [31–33].

Nearest-neighbor sampling assumes that the
sampled value, Î�x; y�, is defined as

Î�x; y� � I�i; j�; i � round�x�; j � round�y�;
(1)
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where I is the true image function, I�i; j� are the
known image function values at integer coordinates,
�x; y� ∈ R2, and �i; j� ∈ I2 [34]. The nearest-neighbor
sampling technique of representing an image gives
rise to the typical notion of having a rectilinear grid
of squares as shown in the 1D example in Fig. 1. This
is the method of image sampling most commonly
used to formulate the phase retrieval problem be-
cause of the ease with which a 2D, discrete array
of numbers, I�i; j�, can be discrete Fourier trans-
formed. The major drawback to this method of
sampling is that an analytical Fourier transform
either does not exist or is far too cumbersome for
arbitrary image functions. Additionally, nearest-
neighbor sampling is known as the worst of the sam-
pling techniques for representing images [34].

Bilinear sampling differs from nearest-neighbor
sampling in that the sampled image stays continu-
ous in its function value. Given image function
values, I�x; y�, at integer positions �i; j� a bilinear in-
terpolation is performed to obtain the image function
values, Î�x; y�, in continuous �x; y� space in the form

Î�x; y� � I�i−; j−��i� − x��j� − y�
� I�i�; j−��x − i−��j� − y�
� I�i−; j���i� − x��y − j−�
� I�i�; j���x − i−��y − j−�; (2)

where i− � floor�x� and i� � ceiling�x�, and likewise
for j and y [34]. The bilinear interpolation is superior
to nearest-neighbor sampling in terms of image qual-
ity, to a viewer. There is less visible evidence of the
grid pattern due to the function’s continuity across
edges of grid elements, as shown in Fig. 1. A reason
bilinear sampling is not advantageous to pursue in
phase retrieval is, like nearest-neighbor sampling,
there is no easy way to analytically Fourier trans-
form an arbitrary image function.

Because neither nearest-neighbor nor bilinear
sampling lends itself to analytical Fourier transfor-
mation, neither is really well suited for phase
retrieval. A less common image reconstruction filter-
ing technique is the Gaussian radial basis (GRB)
function [30,35]. This technique places many 2D
Gaussians across the image at specified positions
and sums them to form a continuous, smooth image

function. This image representation technique main-
tains not only continuity in the image function value
but also in its slope. An analytical Fourier transform
is also available. For this reason the GRB is enticing
to use for phase retrieval. In the comparison in Fig. 1,
six Gaussians are placed at x � �0; 1; 2; 3; 4; 5�, with
amplitudes A � �1; 0.05;−0.95;−0.25; 1.05; 0.05� and
standard deviation 0.5. The Gaussian interpolation
matches the true function much more closely than
the nearest-neighbor and linear interpolation.
Additionally, Fig. 2 shows the image of a fictitious
satellite formed with Gaussian bases. The blurring
corresponds to the effect a finite aperture optical sys-
tem would impose on the image, as will be discussed
in the next section. While this does not prove that
GRBs are superior, these examples demonstrate
the concept of having an image with arbitrary geom-
etries formed with Gaussians.

Why so much discussion of image sampling if the
issue here is phase retrieval? Traditionally, phase
retrieval algorithms treat the diffraction pattern
information as discrete. To achieve better quality
or higher resolution images in traditional phase
retrieval, the resolution of the discrete map of the dif-
fraction pattern is increased. Here, we will extract
the diffraction pattern’s continuous structure from
the discrete measured data using a spectrum analy-
sis, thus allowing for continuous functions through-
out the phase retrieval process. The goal is to use
discrete representations of information only if
absolutely necessary and attempt to turn discrete,
measured data into continuous information. Because
an image must always be discretized before display-
ing to a computer monitor or printing, the continuous
image function formed with GRBs can be sampled
after the phase retrieval is performed.

B. Gaussians in Imaging

Another justification for using the GRB is that most
data acquisition for imaging takes place using circu-
lar apertures. For a finite circular aperture, the point
spread function has the form

U�ω� � C
J1�ω�
ω

; (3)
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Fig. 1. Comparison of various samplingmethods’ representations
of the function cos�x�.

Fig. 2. Example image with arbitrary geometry formed with
Gaussian bases.
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where J1�ω� is the Bessel function of the first kind
andC is a constant [36]. The intensity, called the Airy
pattern, is thus

I�ω� � C2

�
J1�ω�
ω

�
2
� C2�jinc�ω��2: (4)

The jinc function is often approximated as a
Gaussian. As shown in Fig. 3, this approximation
is accurate for most practical purposes and provides
an easier expression for analytical work than the jinc
function provides. Since the diffraction integral leads
to a Gaussian (by approximation), the optical trans-
fer function is also a Gaussian. This leads to the con-
clusion that all images viewed through a circular
aperture are essentially formed by a network of
Gaussians making the GRB image more representa-
tive of what an aperture captures than a pixe-
lated image.

2. Phase Retrieval Using Gaussian Radial Bases

An image can be considered to be a function in 2D
space, I�θ�, where θ is the spatial position vector.
The image is the sum of N 2D Gaussians such that

I�θ� �
XN
j�1

Aj exp
�
−

1

2σ2j
�θ − θj�

2
�

(5)

each having the amplitude Aj, location θj, and
width σj. An image in this form has the continuous
Fourier transform [37]

J�u� �
������
2π

p XN
j�1

Ajσj exp�−2πiu · θj� exp�−2σ2j π2u · u�;

(6)

based on the Fourier transform convention

J�u� �
Z

∞

−∞
I�θ� exp�−2πiu · θ�dθ: (7)

Often times in interferometry, the squared magni-
tude of the Fourier transform, also referred to as the
squared coherence, is measured, thus making the
squared coherence the input to the phase retrieval
problem. Using the Gaussian bases, the squared
coherence is

jJ2�u�j �
����2π

XN
j�1

XN
k�1

�AjAkσjσk exp�−2π2σ2j σ2ku · u�

× exp�−2πiu · �θj − θk���
����: (8)

This expression leads to an interesting realization:
the positions of the Gaussians in the image, θj and
θk, appear in the squared coherence expression as
a frequency component in the Fourier domain. If
the frequency components are identified, the relative
positions of the Gaussians in the image can be
determined.

To identify the frequency components within the
squared coherence data, a Fourier transform
(denoted the “spectrum analysis” Ĵ�θ� for clarity) is
performed such that

Ĵ�θ� � F fjJ2�u�jg�θ� �
������
2π

p XN
j�1

XN
k�1

AjAk
σjσk�����������������
σ2j � σ2k

q

× exp
�
−

�θ� θj − θk�2
2�σ2j � σ2k�

�
: (9)

The spectrum contains N2 Gaussians translated
across the θ space; however, N of the Gaussians
are at the origin. This means there are N�N − 1�
unique Gaussians. The translations of the Gaussians
reveal a useful property. Consider a single value of j.
For all k, the image’s Gaussians are placed such that
the entire image is revealed with the j � k Gaussian
at the origin. This realization reveals the fact that
the true image occurs N times in the spectrum, with
each instance of the image translated such that one
of the Gaussians is at the origin.

Since the measured squared coherence data is typ-
ically discrete, a discrete Fourier transform can be
performed that will reveal local maxima indicating
each frequency component. Additionally, a Gaussian
can be fitted at each local maxima to identify the
standard deviation and amplitude of the Gaussian.
Because the frequency components, amplitudes,
and standard deviations of the continuous image
can be determined from the discrete squared coher-
ence data, a transition can be made from discrete to
continuous. Ideally, there are N�N − 1� maxima. A
problem can occur if multiple θj − θk pairs have the
same value. This would cause the Gaussians in
the spectrum to overlap, thus masking the two
Gaussians as one larger Gaussian. This problem
has not yet been solved. For multiple θj − θk pairs
close in value, but not equal, the two summed
Gaussians in the spectrummay present a case where
the Gaussians overlap enough that only one local
maxima exists. In this case, rather than searching
for local maxima, a Gaussian based fitting method
could produce the proper results. This idea has not
been fully investigated yet but may prove more
accurate than simply locating local maxima.
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Fig. 3. Comparison of the jinc�x� function and a unit Gaussian
approximation.
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Algorithm 1, shown below, can be used to identify
theN overlapping images. The goal here is to add one
Gaussian to the image estimate at a time, making
sure the Gaussian added belongs to the main image
instance and not one of the translated instances. The
image is built up one Gaussian at a time until the
true image is revealed.

Figure 4 shows a simple image with four
Gaussians. The spectrum analysis of this image is
shown in Fig. 5, which contains the four translated
images. The bold arrows show the development of the
main image instance. The lighter arrows show the de-
velopment of the secondary translated images, each
withdifferent dashed lines.Note that anyof the trans-
lated images shown could be considered the main im-
age, depending upon the algorithm’s starting choice.

Once the individual Gaussians in the image are
found, the image can be reconstructed using Eq. (5).
The resulting image is continuous and has infinite
extents. The image function can be nearest-
neighbor-sampled to create a grid of discrete pixel
values for display.

Algorithm 1. Image Reconstruction from Spectrum Analysis.

3. Example in Astronomy

To demonstrate this technique of phase retrieval,
consider the Pleiades star cluster shown in Fig. 6.

For the sake of this example, the image was created
such that it can be represented as a continuous func-
tion with nine Gaussians representing the nine
main stars in the cluster. The measured squared
coherence data in Fig. 7, sampled from the continu-
ous Fourier transform of the image, has a resolution
of 1024 × 1024. The spectrumanalysis shown in Fig. 8
is merely the discrete Fourier transform of this
1024 × 1024 array.

The spectrum was scanned to find all of the posi-
tions, widths, and amplitudes of the Gaussians that
are then used in the phase retrieval algorithm.

Fig. 6. Pleiades star cluster used as an example of GRB phase
retrieval; this image serves as both of the inputs to the phase
retrieval algorithm.

Fig. 7. Squared Fourier modulus of the Pleiades star cluster
image represented as a 1024 × 1024 array.

Fig. 5. Sample image spectrum analysis showing the progressive
development of the four translated images. Each image has differ-
ent line styles connecting the four Gaussians in the order that
Algorithm 1 identified the Gaussians.

Fig. 4. Sample image for the algorithm demonstration.
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The resolution of the measured squared coherence
data dictates the resolution of the spectrum, which
limits the accuracy when determining the positions
of the Gaussians in the spectrum. This limited accu-
racy in turn limits the accuracy of the final image.
The result of Algorithm 1 is shown in Fig. 9. The
positions of the Gaussians in the final image are
accurate to �1∕2 pixel.

It is also worth mentioning that the HIO method
can be used to obtain the phase estimate for this im-
age. The HIO method, with feedback parameter β �
0.9 and proper rectangular background constraints,
requires approximately 500 iterations to converge to
nearly zero error. For this image, with resolution

512 × 512, the stars are not well defined, due to
the pixilation. The reproduced image in Fig. 10 looks
fine; however, upon closer inspection, near one of
the stars there is much distortion. A comparison is
shown in Fig. 11 between the topmost star in the
GRB image and the HIO image. In the discrete
HIO image the star is not perfectly round, and there
is no clear metric for describing the radius of the star.
The Gaussian bases, however, give a clear metric: the
standard deviation of the continuous Gaussian. Note
that the GRB allows for a discrete image to be
produced at any resolution because it is a continuous
image.

4. Conclusions

A notable benefit of use of the spectrum analysis of
the squared coherence data over directly inverse
Fourier transforming, as is the case in the HIO
method, is that the Fourier domain must only con-
tain enough measurements to identify its frequency
components. Traditional phase retrieval methods re-
quire either complete Fourier domain coverage via
measurements or some kind of estimation of the
missing data. There are potentially other methods
of identifying these frequency components beyond
the discussion here that may lead to more accurate
results and can tolerate the overlapping frequency
components, as discussed earlier. An additional ben-
efit of this spectrum analysis method is the inherent
continuity of the image. As shown in the HIO results,
pixilation can alter the content of the image. In the
example shown, due to the pixilation, a round star
doesn’t appear round and the boundaries of the star
are vague.

In practice, the measured squared coherence data
contains some amount of noise that causes a lack of
smoothness in the Fourier domain. Because the
Fourier transform of the coherence data is used to
generate the spectrum, the smoothing effect of the
Fourier transform helps to alleviate the effect of
noise. Since this method of phase retrieval is in its
infancy, no explicit noise analysis has been per-
formed yet.

The method presented here builds upon the suc-
cesses and shortcomings of prior research in the
phase retrieval field, but also takes a step back
and approaches the problem from a new point of
view. The properties of finite aperture optics and
the continuity of an image viewed through a finite
aperture lead to the Gaussian bases. The algorithm

Fig. 8. Spectrum analysis of the Fourier transform of the
Pleiades image.

Fig. 9. Estimated image of the Pleiades resulting from the appli-
cation of Algorithm 1 to the spectrum analysis in Fig. 8. The
continuous image is point sampled for display.

Fig. 10. 512 × 512 pixel result from the HIO method with a
rectangular support region.

Fig. 11. Topmost star in the (a) GRB and (b) HIO images as
shown in Figs. 9 and 10, respectively.
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presented here employs a recursive scheme to find
each Gaussian in the image based on the pattern
in the spectrum analysis. This algorithm is not iter-
ative in the sense that there are a fixed number of
recursions needed to resolve the image. This con-
trasts with the HIO method and other projective
methods. In these other methods, a subsequent iter-
ation can always be performed and, in theory, every
subsequent iteration gives a better estimate of the
image. Here, once the correct pattern is found via re-
cursion, a closed form equation relates the Gaussian
locations in the spectrum analysis with the bases of
the image.

Ongoing work on this topic includes improvement
to the spectrum analysis to allow for images with
many more Gaussians than the example shown here
and a quantification of the effect of noise on this
algorithm.
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