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ABSTRACT   

An Inverse Synthetic Aperture LADAR (ISAL) system is capable of providing high resolution surface mapping of near 

Earth objects which is an ability that has gained significant interest for both exploration and hazard assessment. The use 

of an ISAL system over these long distances often presents the need to operate the optical system in photon-starved 

conditions. This leads to a necessity to understand the implications of photon and detector noise in the system. Here a 

Carrier-to-Noise Ratio is derived which is similar to other optical imaging CNR definitions. The CNR value is compared 

to the quality of experimentally captured images recovered using the Phase Gradient Autofocus technique both with and 

without the presence of atmospheric turbulence. A minimum return signal CNR for the PGA to work is observed. 

Keywords: Inverse Synthetic Aperture LADAR, ISAL, Long-range imaging, Phase Gradient Autofocus, PGA, Range-

Doppler imaging, Carrier-to-noise ratio, CNR 

1. INTRODUCTION  

The progression of range-Doppler radar has led to the development of optical radar systems, LADAR, due to the increased 

range and cross-range imaging resolution and better active illumination directivity [1, 2]. The system of specific interest 

here is the Inverse Synthetic Aperture LADAR (ISAL). An ISAL system actively illuminates the moving or rotating target 

with a chirped laser. The reflection from the target is captured and detected with a sensitive heterodyne detector. This 

detector simultaneously yields the intensity and phase of the return signal [3, 4]. The frequency of the intensity information 

gives the range to a scatterer on the target, and the phase progression resulting from a small Doppler shift gives the velocity 

of a scatterer on the target. The intensity and phase information is used to “focus” or reconstruct a projection of the three-

dimensional target object into a two-dimensional topographical map. This LADAR method is particularly well suited for 

imaging small near-Earth bodies because most have a nearly constant rotational velocity and many produce sizable retro-

reflections [5, 6]. 

In the assessment of the quality of a return signal, the carrier-to-noise ratio (CNR) is a common metric [7, 8, 9]. Here we 

wish to determine the consistency in the relationship between the CNR value and the quality of the final image returned 

from the field-standard Phase Gradient Autofocus (PGA) algorithm without the assumption that the detector is photon 

limited as was made in [7]. Additionally, we wish to assess the performance of PGA at low signal levels opposed to the 

discussion in [10] where a high CNR is considered. The intention here is to find a metric which will predict whether PGA 

will be able to produce a proper image. The basis of this study is empirical data, not simulation. 

We wish to observe the relationship between CNR and the quality of an image. For this comparison the contrast of the 

image is used as the quality metric. To begin this study the definitions of CNR and contrast must be meticulously stated 

and thoroughly understood. Next, an overview of an experimental ISAL testbed is presented. This testbed is used to 

systematically assess the correlation between the quality of an image from the PGA algorithm with the corresponding CNR 

value of the signal. We show that ISAL data from two targets can have the same CNR value, but some can be focused into 

an image while others cannot. This results in a CNR and analogously a number of photons per range-bin threshold which 

is necessary but not sufficient for the PGA algorithm to return the desired result. The addition of atmospheric turbulence 

in the beam path is shown to further increases this threshold. 
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2. DERIVATION OF THE DETECTION MODEL 

The CNR can be simply stated as an estimate of the carrier signal strength from the target divided by the standard deviation 

of that estimate. The definition of CNR, however, must have a rigorous definition of this estimate and standard deviation. 

To correctly define the estimate and standard deviation, a model of the measurements in the ISAL detector must be derived. 

This model will give insight into the meaning and proper uses of the CNR quantity. The modeling of the CNR here expands 

on the discussions in [8, 9] but photon-limited conditions are not assumed resulting in a more generally applicable result. 

The conceptual definition of CNR being used here is comparable to that used in the telecommunications industry; however, 

here photon rates are used instead of RF signal power [11, 12]. 

Consider that the total optical power incident upon a detector is related to the 𝐸 field integrated over the detector area as 
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where 𝐴𝑑, 𝑓, 𝑡, and 𝜑 are the detector area, frequency, time, and phase of the field. The amplitude 𝐸 is chosen such that 
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where 𝐸̅ is the average amplitude over the detector area. Therefore, under this notation 
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in which N is the number of photons incident upon the detector in the averaging time 𝜏. This definitions follows the 

classical notion that there is no fluctuation in the photon rate, i.e. shot noise is not considered [13, 14]. Shot noise and 

detector noise will be introduced later in this derivation. 

In the ISAL system, the laser frequency is chirped such that the waveform in time is 𝐸 exp(2𝜋𝑖(𝑓0 +
1

2
𝑓̇𝑡)𝑡). Assume that 

the local oscillator (LO) of the heterodyne detector follows this waveform, and the waveform of the signal (S) returned 

from a point target is delayed and phase shifted. The total waveform seen by the detector is thus 
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Making use of the notation in Eqs. (1) through (3), the output from the detector due to the field 𝐸𝐷 is an electrical current 

given by 
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where 𝜂𝑑 is the quantum efficiency of the detector, 𝜂ℎ is the heterodyne efficiency, 𝑒 is the charge of an electron, 𝑁𝐿 and 

𝑁𝑆 are the mean number of LO and signal photons per pulse, and Δ𝑓 is the beat frequency between the return signal and 

the LO [9, 13]. 

The Fourier transform of the photodetector output must be computed to isolate the carrier signal’s amplitude from other 

return signals and other noise contributions. If a pulse is sampled 2𝑀 times, the Δ𝑓 DFT frequency element is thus 
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The quantity in Eq. (6) is the Fourier transform of the heterodyne signal assuming constant photon rates in the LO and 

return signal. In reality the detected signal 𝐷̃(Δ𝑓) is subject to shot noise and detector noise. The exact variances of these 

noise components will be modeled later, but for now let the shot noise and detector noise have variances 𝜎𝑆𝑁
2  and 𝜎𝑁𝐸𝑃

2  

respectively. These two noise sources introduce zero-mean, complex-valued Gaussian noise into the signal such that the 

detected number of signal photons 𝑁𝑆 follows the model [15] 
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In this notation, 𝑁(0, 𝜎2) indicates a complex-valued, zero-mean Gaussian random variable with a variance of 𝜎2. To 

further simplify, the charge of an electron can be divided through to give the non-dimensional form 
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This model of the Fourier transform of the measured photodetector data will be used to define a carrier-to-noise ratio based 

on estimates of the number of signal and LO photons. 

2.1 Mean number of photons per pulse per range-bin 

The estimates of 𝑁𝐿 and 𝑁𝑆 are the results of quantifying the temporal-mean optical power at the photodetector due to the 

LO and from a single range-bin target respectively. The estimate is based on the mean Power Spectrum Density (PSD) of 

the voltage measurements from the photodetector during several pulses. Given the 𝑗𝑡ℎ voltage measurement in the 𝑘𝑡ℎ 

pulse, the mean PSD is 
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It is worth noting that in the expression shown here the voltage measurements for a single pulse are isolated from the time 

history using a rectangular window function. The imaging results are improved if a better window such as a Taylor window 

is used [16]. The rectangle function tends to cause ghost images to appear in the final result because of the side-lobes in 

the Fourier transform of the rectangle function. 

If the range-bin in the positive frequency half of the PSD exists at the index 𝑢 and the spectral resolution is 𝛿𝑓, the total 

electrical power of the return signal is 

   Sig uP f P P   (10) 

where 𝑃̅ is the mean background in the PSD near the signal peak. Since the measured signal is the result of heterodyne 

mixing, the heterodyne power is 
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in which 𝐺𝐴𝐶  is the gain of any amplification to the AC voltage signal between the photodetector and the data acquisition. 

The optical power returned from the target in the range-bin being considered is thus 
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where 𝑃𝐿  is the optical power received by the photodetector from the LO. The LO optical power can be determined from 

the DC voltage signal from the photodetector 𝑉𝐷𝐶 as 
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where 𝐺𝐷𝐶 is the gain of any amplification to the DC voltage signal between the photodetector and the data acquisition. 

Defining 𝐸𝑃ℎ = ℎ𝑐 𝜆⁄ , the average number of local oscillator photons detected per pulse is  
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and the average number of signal photons per pulse in this range-bin is 
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2.2 Variance of the photon rates 

The photon detection rate is corrupted by shot noise and detector noise. The shot noise is described by a two-dimensional 

Gaussian which corrupts the complex value described by Eq. (6). Shot noise is known to be a Poisson process—the 

variance is equal to the mean. As a result if the total number of photons detected by the photodetector is 𝜂𝑑(𝑁𝐿 + 𝑁𝑆), the 

width of the Gaussian corrupting the number of detected photons is equal to this quantity. Since the zero-mean two-

dimensional Gaussian probability density function is described as 
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and the variance of this two-dimension Gaussian follows 
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the variance due to shot noise is 
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assuming 𝑁𝐿 ≫ 𝑁𝑆. 

The detector noise can be quantified by the detector’s “noise equivalent power” (NEP). This quantity specifies the electrical 

power seen over a frequency band at some mean frequency. It is given in units of Watts per root Hertz. In this case the 

mean frequency is the beat frequency ∆𝑓, and the frequency band is the bandwidth of a range element being captured. This 

range element size is dictated by the range resolution of the detector. Given a detection time 𝜏, the range resolution is 
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Converting the range resolution to a frequency resolution, which corresponds to the pulse voltage FFT spectral resolution, 

in the return heterodyne signal gives 
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The NEP is assumed to follow the standard convention as described in [17]. Converting the NEP quantity 𝑃𝑁𝐸  to a variance 

of the two-dimensional Gaussian corrupting the number of detected photons per pulse yields 
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3. CARRIER-TO-NOISE RATIO DEFINITION 

As stated previously, the CNR definition is the ratio of the carrier signal strength to the standard deviation of that estimate. 

Using the model in Eq. (8), the CNR can be defined as 
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Taking the second statistical moment of Eq. (8) and letting 𝜑 = 0 without loss of generality gives 
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Squaring this equation, as is needed to substitute into the denominator of Eq. (22), yields 
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Taking the fourth statistical moment of Eq. (8) gives 
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which is also needed in Eq. (22). Combining the previous several equations yields 
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Making the substitutions for the variances of the noises yields further simplification. The numerator requires special 

attention. Eq. (23) shows that there is a bias in the estimation of 𝑁𝐿𝑁𝑆; however, this bias is subtracted off of the estimate 

given by Eqs. (14) and (15) by subtracting the noise floor in Eq. (10). By using Eqs. (14) and (15) as the estimates of 𝑁𝐿 

and 𝑁𝑆, the final carrier-to-noise ratio is 
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The first two terms in the denominator are the result of only shot noise and match the CNR model in [8, 9]. The other terms 

in the denominator are the result of detector noise in which the value of 𝜎𝑁𝐸𝑃 needs to be derived for the specific detector 

being used. For the results presented here there are two dominant terms in the denominator: the first and third. These 

dominant terms are similar magnitudes, i.e. 
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The shot noise and detector noise are the same order of magnitude because the experimental setup discussed later is not 

photon limited. A photon limited system may not need to include the NEP effects in the CNR because O(𝜎𝑁𝐸𝑃
2 𝑁𝐿⁄ ) ≪ 1 

would be true [18]. 



 

 

 

 

The CNR value given in Eq. (27) can only be evaluated for a single range-bin. Recall that the number of signal photons 

was derived only for a single range-bin in Eq. (4), and the spectral bandwidth was only a single range-bin in Eq. (21). 

Since the ISAL image likely contains many range-bin, the CNR of each-range-bin must be evaluated separately and tallied 

in some manner. For later analysis the “Mean CNR” of the range-bins which are populated by the target is reported. 

4. CONTRAST DEFINITION 

A quality metric used here to quantify the image quality resulting from the PGA process is the contrast of the image defined 

as the difference between the mean foreground and mean background pixels divided by the standard deviation of the 

background pixels, i.e. 
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where 𝑁 is the number of foreground pixels, 𝑀 is the number of background pixels, and 𝛾 denotes the set of pixels in the 

foreground. The criterion for a pixel being in the foreground can be defined in many ways. Here we simply define a 

polygon around the region of the image which corresponds to the shape of the target as observed in a clear, high-power 

image. In all of the targets studied here these are simple elementary shapes, i.e. a rectangle or a circle. This method is 

acceptable for the analyses presented here because we have a priori knowledge of the target. When comparing images of 

the same target with varying transmitter output power, the polygon is defined for the highest transmitter power case and 

kept consistent for all other power levels. It is not redefined for the lower power images regardless of what the image looks 

like. This gives a consistent basis for comparison. 

The goal of using the contrast metric is to look at the trend in the contrast versus the CNR. By looking at the trend, the 

CNR value where the contrast reaches unity can be defined as the operational threshold of the PGA algorithm. This 

definition is made because when the contrast decreases to unity the foreground pixels typically have a similar value as the 

background pixels. This means that even if PGA autofocuses correctly, the image is still not necessarily resolvable to an 

observer. The contrast is thus only presented as a diagnostic metric for the PGA. Its requirement of a priori knowledge of 

the target does not make it a suitable blind test metric. 

5. EXPERIMENTAL SETUP 

The system consists of a transmitter, heterodyne receiver, rotating target, data processing, and hardware controllers. The 

laser is a 1310 nm tunable laser which produces a chirped waveform. The details of producing the chirp are presented in a 

concurrent paper [19]. The laser beam is split sending 90% to the transmitter to illuminate the target and 10% to the receiver 

to act as the local oscillator. The optical path is shown in the schematic in Figure 1.  

The transmitter in the system takes on two forms: one introduces atmospheric noise while the other does not. The simple 

transmitter illuminates the target with a collimated beam from a fiber tip and is shown in Figure 1. The other transmitter 

illuminates the target with a dynamic speckle pattern which simulates atmospheric disturbances incurred while illuminating 

a spaceborne object from the Earth’s surface. The phase error in the beam is introduced by passing the light through a 

“phase wheel.” The phase wheel is a 4 inch optical window with varying thickness which rotates to introduce a piston error 

over an area 𝑟0. To simulate the atmosphere the beam is passed through the phase wheel with a beam diameter of 6𝑟0. The 

result is not just a phase piston error but a speckle pattern which changes in time. The speckle pattern is produced and then 

reimaged onto the target. In sequence, the light from the fiber tip is collimated, truncated to FWHM, and then focused such 

that is passes through the phase wheel when it has a width of 6𝑟0. The focal point, where the speckle pattern lies, is 

reimaged onto the target such that the average speckle is slightly larger than the target. This system is shown in Figure 2. 

 



 

 

 

 

 

Figure 1. Imaging system schematic and photograph showing the simple transmitter and the heterodyne receiver. 

 

Figure 2. Schematic of the transmitter which introduces simulated atmospheric noise into the beam illuminating the target. (1) 

Fiber tip (2) Collimating lens (3) Iris (4) Focusing lens (5) Phase wheel (6) Speckle pattern (7) Reimaging lens (8) Speckle 

pattern on target 

The target is a Spectralon plate mounted on a rotation stage which is actuated by a PZT shown in Figure 3. The rotation 

rate is 1.25e-5 rad/s for a 1 minute data collection period. Spectralon was chosen because it has nearly Lambertian behavior 

in the near IR [20]. This behavior is desirable because the target was oriented in two ways. The Spectralon surface normal 

was positioned at 45° azimuth 0° elevation and 0° azimuth 45° elevation relative to the incident beam. These two 

configurations are depicted in Figure 4. The blue highlighted region in the figure denotes the illuminated portion of the 

target and determines the shape of the observed image. The first case is denoted the “line” target, and the second case is 

denoted the “circle” target. These configurations were chosen because they represent two extremes. The line target has few 

cross-range-bins for each range-bin. The circle target has many cross-range-bins for each range-bin. It is expected that the 

contrast of the circle target’s image will be less than the contrast of the line target’s image because the values of the cross-

range pixels in the image result from the Fourier transform of the pulse’s Fourier transform. Therefore, Parseval’s theorem 

dictates that for the same mean CNR the line target will have a higher contrast than the circle target. 
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Figure 3. The imaging system as shown in Figure 1 and the Spectralon target on the PZT rotation stage. 

 

Figure 4. Orientations of the Spectralon target surface normal in azimuth-elevation relative to the illumination beam used for 

performance diagnostics. The axes shown in the side views denote the axis about which the target rotates. The blue region 

indicates the shape of the expected image in range and cross-range. 
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6. EXPERIMENTAL RESULTS 

The experimental results demonstrate two main conclusions. The area target consistently has a lower contrast than the line 

target given the same CNR because the pixel values result from a Fourier transform in which Parseval’s theorem must 

hold. Additionally, when atmospheric turbulence is introduced the image contrast decreases such that the minimum CNR 

which PGA will work increases. These conclusions were made by imaging the targets repeatedly while decreasing the 

transmitter power effectively reducing the CNR. The results are shown in Figure 5. Below a contrast of 1 the images were 

not resolved correctly. “Not resolved” means that the shape of the image foreground did not correspond to the target or the 

foreground was not distinguishable from the background noise. Without turbulence the line target was resolvable down to 

a CNR of 0.25 and the area target was resolvable down to a CNR of 0.4. Adding turbulence increased the minimum CNR 

for the line target to 0.6. Higher CNR measurements were not possible due to the power losses associated with the extra 

optics in the transmitter shown in Figure 2. 

Images of the line and area targets without turbulence at high and low CNRs are shown in Figure 6 and Figure 7. Comparing 

the magnitude of the noise in the background confirms the difference in the contrast of the two images. In the low CNR 

image, the noise artifacts are nearly the same magnitude as the foreground. Figure 8 shows the line target at the lowest 

CNR dataset which revealed an image. Comparing with Figure 6b shows that for a similar contrast and quality of the 

image, the CNR is over twice as high. Detailed views of the photons and CNR per range bin for the line target at low CNR 

with and without turbulence are shown in Figure 9 and Figure 10. Without turbulence the image was recovered with as 

few as 1.5 photons per range-bin per pulse. With turbulence the number of photons per range-bin per pulse for image 

recovery is nearly doubled. 

 

Figure 5. Contrast vs Mean CNR for the line target, area target, and the line target with atmospheric turbulence. The 

uncertainties of the Mean CNR values are ≤0.1. 



 

 

 

 

 

a) Mean CNR = 1.32, Contrast = 5.9 

 

b) Mean CNR = 0.31, Contrast = 1.3 

Figure 6. Sample high and low CNR images of the line target. 

 

 

a) Mean CNR = 1.07, Contrast = 3.2 

 

b) Mean CNR = 0.31, Contrast = 0.84 

Figure 7. Sample high and low CNR images of the line target. 

 

 

Figure 8. Image of the line target with atmospheric turbulence. Mean CNR = 0.79. Contrast = 1.8. 



 

 

 

 

 

Figure 9. The photon counts and CNR per range bin for the image in Figure 6b. The highlighted region denotes the range-bins 

that correspond to the target according to a priori knowledge. The lighter lines denote the 1𝜎 uncertainty bound. 

 

 

Figure 10. The photon counts and CNR per range bin for the image in Figure 8. The highlighted region denotes the range-bins 

that correspond to the target according to a priori knowledge. The lighter lines denote the 1𝜎 uncertainty bound. 

  



 

 

 

 

 

7. CONCLUSIONS 

We presented an analytical model of the ISAL observation data which included the heterodyne process, photon noise, 

detector noise, and the pulse Fourier transformation to isolate the return signal in a single range-bin. This model was used 

to derive a CNR model similar to that used in telecommunications and other SAL studies. The inputs to this CNR model 

were derived based from the voltage measurements which would be available in an experiment. Next, a quality metric for 

the PGA image, the contrast, was presented. A comparison of the CNR to the contrast revealed a trend which indicates the 

failure threshold for the PGA. 

Using the contrast quality metric to observe the PGA performance trend as the return signal strength was decreased 

revealed a consistent threshold where PGA would stop working in the absence of atmospheric turbulence. This threshold 

was expected and was observed to occur at a contrast level of approximately unity. This corresponds to ~1.5 photons per 

range-bin which is a Mean CNR of 0.25. This threshold represents a necessary condition—but not a sufficient condition—

for PGA to work since most real-world data will have atmospheric turbulence. With the addition of atmospheric phase 

error in the illumination beam simulating observation of a near-Earth object from the ground, the Mean CNR threshold 

was increased to 0.6. It should be noted that when the PGA began to fail, often speckles in the image were visible above 

the background noise; however, the shape of the target was not resolved. This implies that there was sufficient return signal 

strength to separate signal from noise, but the phase information on which PGA relies was degraded. 

The threshold number of photons of 1.5 for PGA to work (in the absence of atmospheric turbulence) can be attributed to 

the uncertainty principle relationship between the number of photons and the variance of the phase. While many theories 

and specialized analyses pertaining to heterodyne detection exist on the topic [21, 22, 23, 24, 25], essentially the phase 

variance Δ𝜑 is related to the photon count 𝑁 by a relationship like Δ𝜑~𝑁−1 2⁄  in [22]. This implies that as the photon 

count gets sufficiently small the variance of the phase increases to a point where sequential measurements of the phase 

cannot be unwrapped with adequate accuracy. Since PGA relies on the ability to phase connect the return signal across 

many pulses, a growth in the phase variance causes convergence of the PGA to be impossible due to the Heisenberg 

uncertainty. We thus suggest that improvements to the data processing algorithms, the experiment hardware, or the system 

parameters may not provide substantial improved performance in the ~1 photons per range-bin regime unless the phase 

variance can be reduced by considering many range-bins. 
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