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Summary

Goals: 

• Demonstrate ISAL functionality in photon-starved conditions.

• Find a metric that can predict the success/failure of PGA based on the 
return signal strength.

Outline:

• Testbed hardware setup and data processing
• Basic setup for low-CNR

• Atmospheric turbulence synthesis
• Data pipeline

• CNR
• CNR definition for a single range-bin (including detector noise)

• Various metrics based on CNR

• Image quality metric to compare to metrics based on CNR

• Experimental Data
• High CNR functionality tests
• Low CNR imaging examples showing PGA failure at mean CNR=~0.25
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Testbed Hardware Setup and Data 
Processing
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Transceiver / Target Layout
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Transceiver Assembly
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Transmitter Designs

• No atmospheric turbulence

• Fiber termination and collimating lens

• Atmospheric turbulence

1. Fiber Termination

2. Collimating Lens – collimate light from fiber

3. Iris – truncate Gaussian beam to FWHM

4. Focusing Lens – focus collimated light through the phase wheel

5. Phase Wheel – introduce phase error

6. Speckle Image – focal point of focusing lens

7. Magnification Lens – magnify the speckle image onto the target
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Testbed Overview
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PGA Summary
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Our best results came from starting the window at 75% of the 
cross range extent, allowing 𝜑 to converge to nearly zero, 
then decreasing window size by 25%. Repeat until window is 
~10 pixels in cross range.

Over-sampling in range or including range-bins with very low CNR shouldn’t 
influence the phase increments. Simply includes noise in summation.



CNR Derivation and 
Image Quality Metrics
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CNR Definition

• CNR is defined as 
Estimate of carrier strength

StdDev of estimate of carrier strength

• Measurement can be modeled as

• The carrier for a single range bin is 

• Shot noise variance is

• Detector NEP noise variance is

• Model is used to estimate the carrier strength and its variance
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Quality metrics based on 
pre-PGA data:

• # Photons in each range-bin
Maximum, Mean, Sum, Sum of squares

• CNR of mean photons per range-bin

• CNR of each range-bin
Maximum, Mean, Sum, Sum of squares

• Phase progression Variance of each 
range-bin
Minimum, Mean, Sum, Sum of squares 

Quality metric based on 
post-PGA result:

• Image Contrast-to-Noise Ratio

• 𝐶 =
mean foreground −mean background

stdev background

• Foreground region is determined based 
on a priori knowledge of the target.

• PGA performance cannot be assessed as 
𝐶 decreases past 1.

Quality Metric Selection
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Primary Question:
What quality metric has a consistent 
value at the threshold where PGA 
doesn’t work?

Immediate Question:
What quality metric  has a consistent 
value when the image contrast-to-noise 
ratio is 1?



Contrast depends on Cross-Range Extent

Considering only a single range bin and a consistent 
CNR:

• The image contrast is inversely proportional to 
the number of cross-range bins populated by the 
target.

• Parseval’s Theorem:  σ𝑛=0
𝑁−1 𝑃𝑛

2 =
1

𝑁
σ𝑘=0
𝑁−1 𝑝𝑘

2

• Sum of a single range-bin’s magnitude over all 
pulses must equal the mean of the cross-range 
pixel values.

• If a single cross-range pixel is filled by the 
target, contrast will be high.

• If several cross-range pixels are filled by the 
target, contrast will be low.

*This idea is confirmed in the experimental data 
presented later.
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Sample Low CNR Result
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Top View

Contrast: 1.9
# LO Photons per pulse: 5.05e+12
# Range Bins: 33.9

# Photons per Range Bin:
• Max: 1.92
• Mean: 0.55
• Sum: 18.54
• Sum of sqr: 18.52

CNR of Mean Photons per Range Bin: 0.27

CNR of Active Range Bins:
• Max: 0.66
• Mean: 0.24
• Sum: 8.15
• Sum of sqr: 3.14

average over many pulses

Difference



JPL Logo on Spectralon
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Chirp Rate 2THz/s

Pulse Length 34 ms

Acq Time 60 s

Mean CNR 2.76
Front View



Satellite Image
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Chirp Rate 2THz/s

Pulse Length 34 ms

Acq Time 60 s

Mean CNR 4.5

Illumination
Beam

Top View



Contrast vs Mean CNRs
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Low Mean CNR Images
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Top View

Line AreaLine Target (top row)
Area Target (bottom row)

Contrast: 1.8
Mean CNR: 0.79
Turbulence

Contrast: 1.3
Mean CNR: 0.31
No Turbulence

Contrast: 5.9
Mean CNR: 1.32
No Turbulence

Contrast: 0.84
Mean CNR: 0.31
No Turbulence

Contrast: 3.2
Mean CNR: 1.07
No Turbulence



Conclusions

• Testbed build to perform ISAL studies
• Short 2m or long 400m range-to-target

• Synthesized atmospheric turbulence

• High and very low CNR capabilities

• CNR Derivation
• Rigorous derivation of CNR for a single range-bin

• Quality metric for overall signal: “Mean CNR”

• Quality metric for image: Contrast-to-Noise Ratio

• Experimental Results
• Target cross-range extent decreases image contrast (for constant CNR)

• PGA can work for simple images down to ~0.25 CNR

• Atmospheric turbulence raises minimum CNR threshold to ~0.75
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Photon Count Estimation

• Detector DC voltage determines local oscillator photon count:

• The mean one sided PSD: (𝑗𝑡ℎ voltage measurement in the 𝑘𝑡ℎ pulse)

• The number of photons in each range bin is given by:
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CNR Derivation

• Total power at detector due to an E field is 
related to the mean field amplitude: 

• Detector output current due to single range 
element:

• DFT of 2M samples of 𝐼𝑑 at the carrier 
frequency:

• Measured quantity is expected 
number of signal photons plus 
complex noise:

• Measurement has a variance 
due to shot noise:

• Measurement has variance due to detector 
noise

• CNR is defined as 
Estimate of carrier strength

StdDev of estimate of carrier strength
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CNR Derivation (cont.)

• CNR is defined as 
Estimate of carrier strength

StdDev of estimate of carrier strength

• Measurement gives number of detected photons ෩𝑁𝑠.

• Second moment gives estimate of ෩𝑁𝑠

• Fourth moment gives variance of ෩𝑁𝑠

•
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Contrast vs Mean & Max CNR
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