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Abstract: Here the effect of noisy measurement data is explored within the traditional phase retrieval problem with the goal of filtering the 

noise to obtain an estimate of the true data. The method proposed can be applied to most existing phase retrieval methods. 
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1. Introduction 

Since the renowned papers [1, 2] by Fienup, many methods of iterative phase retrieval have been devised that address 
the problem where a two dimensional image is the object of interest and only the magnitude of its Fourier transform 
is known. Thus the phase of its Fourier transform needs to be estimated to recover the image. Building upon Gerchberg 
and Saxton’s Error Reduction method [3], Fienup’s Hybrid Input-Output (HIO) method serves as the basis for 
comparison of most other methods. It projects the estimate of the image from the image domain to the Fourier domain 
repeatedly and imposes various constraints upon each projection in an attempt to find the domains’ intersection. While 
the only viable method, the projective approach has a major caveat: it is susceptible to stagnation. Explicitly, the error 
metric contains local minima which cause the minimization process to halt before reaching the global minimum. Much 
research after the development of the HIO method has focused on modifying the constraints imposed with the goal of 
finding the global minimum. Not much attention, however, has been placed on filtering noise in the modulus data. 
 Directly addressing the issue of noise in the Fourier modulus data introduces a change to the problem statement 
which has a severe effect, as will be shown later. Where the ideal phase retrieval problem statement is to find the 
intersection of the Fourier and image domains via successive projections, noise in the modulus data may cause the 
two domains not to intersect. The problem statement must be reformulated such that the minimum distance between 
the domains is sought, not the intersection. The examples shown here reveal that not having an intersection can cause 
many phase retrieval methods to diverge. This discussion expands on the work in [4] and includes applications to 
phase retrieval methods beyond the HIO.  
 The formal problem statement here is to devise a projective phase retrieval algorithm capable of filtering noise from 
the Fourier modulus data and converging to the true image. This expands on some previous attention to noise in the 
modulus data [5, 6] in that not only is the algorithm required not to diverge, the noise must be filtered. Some papers 
have already approached this problem from the viewpoint of mitigating divergence at high noise levels; however, they 
did not have the end goal of filtering the noise. Comparisons will be presented to these methods. 
 A useful compilation of some of the best phase retrieval methods was published by Marchesini [7]. He performed 
a side-by-side comparison of some phase retrieval methods in a simple two degree-of-freedom example which will be 
used extensively in the work here. The example problem consists of finding the intersection between two domains in 
two dimensional space. This example allows for a visualization of the projections and constraints at each iteration. 

2. Effects and Filtering of Noise 

The various projections in the phase retrieval algorithms typically follow a notation using projection operators. Two 
main operators are thus defined. The modulus domain projection is 

     1 ,v exp arg , .mP FT F u i FT g x y        
  (1) 

 FT   is the discrete Fourier transform, and  ,F u v  is the measured modulus. The image domain projection is 
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where   is the foreground region. Each phase retrieval algorithm has its own use of these projections, but the simplest 
is the Error Reduction method which is    1 , ,k s m kg x y P P g x y  . 
where  ,kg x y  is the image estimate at the thk  iteration. 
   As shown previously in [4], the noise in the modulus data can be described as a deviation about the true value as in 

        
 ,

, , , ,True

a b

G u v F u v a b u a v b       (3) 

where   is the magnitude of the noise at the  ,a b  location in the  ,u v  plane. When exploiting the linearity of the 
Fourier transform and using the support constraint of the Error Reduction method, each of the summed terms in (3) 
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can be analyzed separately. Following the steps of the Error Reduction projections, the constrained Fourier modulus 
for the noise term is 

    , ,G u v u a v b       (4) 

It follows that the unconstrained Fourier modulus is  
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after going through the image domain projection. The maximum and squared Frobenius norms of (5) are both 
decreased by the factor 

    1 12 2M A N B M N     (6) 

when compared to the modulus before the iteration as expressed in (4). This leads to the idea that the Fourier modulus 
constraint should preserve some of the data in (5) and not completely constrain the modulus to be equal to (4). 
 It is proposed that the Fourier domain projection should be relaxed with the parameter   in the form 

          1 , 1 , exp arg , .m k kP FT FT g x y F u v i FT g x y             
  (7) 

This projection constrains the modulus to stay near the measured quantity but allows deviation based on the previous 
iteration’s Fourier domain. If   is large enough, the Fourier domain will deviate enough to create an intersection with 
the image domain where an intersection previously may not have existed. The value of   should be increased 
cautiously as not to create an intersection near a local minimum instead of the global minimum. 

3. Examples 

As an example, consider the image and Fourier domains in two dimensional space. The Fourier domain M is non-
linear and does not intersect the image support domain S. The algorithm will seek the point of minimum separation of 
the two domains shown in Figures 2a and 2b. Using the traditional Fourier domain projection, the various algorithms 
diverge as shown in Figure 1a. The algorithms shown are the Error Reduction [3], Solvent Flipping [8], Hybrid Input-
Output [2], Difference Map [9], Averaged Successive Reflections [10], Hybrid Projection Reflections [11], Random 
Averaged Alternating Reflector [12], and the Levi-Stark method [13]. Shown in Figure 1b, using the new Fourier 
domain projection causes the solutions to converge to the point where the two domains have the minimum separation 
except for the error reduction and solvent flipping methods which stagnate at the local minimum. Further comparisons 
within the two dimensional example will be shown in the full manuscript revealing more complex behaviors. 

 
Figure 1: Comparison of various phase retrieval projection methods using the a) traditional and b) new Fourier domain projection.  

 As a practical example, consider the photograph of Saturn as shown in Figure 2a. The image has a fairly large 
amount of oversampling which means the filtering effect should be relatively large when the relaxation is implemented 
due to the effect shown in equation (6). For the first 500 iterations the relaxation parameter is zero and the standard 
HIO is implemented with the feedback parameter set to 0.9 as is typical. This results in a noisy, blurry image as shown 
in Figure 2b. After iteration 500 the relaxation parameter was set to 0.9. The background region of the image, both 
outside and within  , is nearly devoid of artifacts. The foreground also shows some improvement; however, the image 
is suffering from a convolution with a flipped image. Using  100 ,G u v  as the Fourier modulus instead of  ,F u v ,  
algorithms such as those presented in [14, 15] can satisfactorily deconvolute the multiple solutions. 
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 The squared error in the Fourier modulus data at the thk  iteration can be defined as  

    
 
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Figure 2d shows the typical trend where the error is constant until the relaxation occurs. Upon   being set to a non-
zero value, a spike occurs followed by a marked decrease. This result definitively shows that the noise is being filtered 
from the modulus data. 

 
Figure 2: Example showing (a) the true image, (b) the reconstructed image after 500 iterations of the HIO, (c) the reconstructed image after an 

additional 500 iterations using the HIO with the new modulus projection, and (d) the Fourier modulus error at each iteration. The box in (b) and 

(c) indicates the boundary of  . 

4. Conclusion 

The work summarized here shows the ability of any projective phase retrieval algorithm to improve its performance 
in the presence of noise with the addition of a relaxed Fourier domain projection. The traditional projection rigidly 
imposes the measured data; however, here the projection combines the information within the measured and the 
previous iteration’s modulus, which contains influence from the image domain projection. The result is a decrease in 
the amount of noise present in the data after very few iterations. Trials have been run which show up to a 65% reduction 
in the error metric in equation (8). The full manuscript will contain comparisons to many phase retrieval methods and 
characterization of the behavior parameterized by the amount of oversampling and the relaxation parameter. 

5. References 

[1]  J. R. Fienup, "Reconstruction of an object from the modulus of its Fourier transform," Optics Letters, vol. 3, no. 1, pp. 27-29, 1978.  

[2]  J. R. Fienup, "Phase Retrieval Algorithms: A Comparison," Applied Optics, vol. 21, no. 15, pp. 2758-2769, 1 Aug 1982.  

[3]  R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of the phase from image and diffraction plane 
pictures," Optik, vol. 35, no. 237, 1972.  

[4]  R. Trahan and D. Hyland, "Mitigating the effect of noise in the hybrid input–output method of phase retrieval," Applied Optics, vol. 
52, no. 13, pp. 3031-3037, 2013.  

[5]  G. Liu, "Object reconstruction from noisy holograms: multiplicative noise model," Optics Communications, vol. 79, no. 6, pp. 402-406, 
1990.  

[6]  M. Kohl, A. A. Minkevich and T. Baumback, "Improved success rate and stability for phase retrieval by including randomized 
overrelaxation in the hybrid input-output algorithm," Opt. Express, vol. 20, pp. 17093-17106, 2012.  

[7]  S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall and J. Spence, "X-ray image 
reconstruction from a diffraction pattern alone," Physical Review B, vol. 68, no. 140101, 2003.  

[8]  J. P. Abrahams and A. W. G. Leslie, "Methods used in the structure determination of bovine mitochondrial F1 ATPase," Acta 
Crystallogr. D Biol. Crystallogr., vol. 52, pp. 30-42, 1996.  

[9]  Elser, Viet, "Phase retrieval by iterated projections," J. Opt. Soc. Am. A, vol. 20, no. 1, pp. 40-55, 2003.  

[10]  H. H. Bauschke, P. L. Combettes and D. R. Luke, "Phase retrieval, error reduction algorithm, and Fienup variants: a view from 
convex optimization," J. Opt. Soc. Am. A, vol. 19, no. 7, pp. 1334-1345, 2002.  

[11]  H. H. Bauschke, P. L. Combettes and D. R. Luke, "Hybrid projection–reflection method for phase retrieval," J. Opt. Soc. Am. A, vol. 
20, no. 6, pp. 1025-1034, 2003.  

[12]  D. R. Luke, "Relaxed averaged alternating relfections for diffraction imaging," Inverse Problems, vol. 21, pp. 37-50, 2005.  

[13]  A. Levi and H. Stark, "Image restoration by the method of generalized projections with application to restoration from magnitude," 
J. Opt. Soc. Am. A, vol. 1, pp. 932-943, 1984.  

[14]  J. R. Fienup and C. C. Wackerman, "Phase-retrieval stagnation problems and solutions," J. Opt. Soc. Am. A, vol. 3, no. 11, pp. 1897-
1907, 1986.  

[15]  J. Zhao, D. Want, F. Zhang and Y. Want, "Hybrid phase retrieval approach for reconstruction of in-line digital holograms without 
twin images," Opt. Eng., vol. 50, no. 9, 2011.  

 

a) True Image b) Estimate, Iteration 500 c) Estimate, Iteration 1000 0 100 200 300 400 500 600 700 800 900 1000
1

2

3

4

Iteration

F
o
u
ri
e
r 

M
o
d
u
lu

s
 E

rr
o
r

         a) True Image            b) Estimate, Iteration 500  c) Estimate, Iteration 1000                            d) Fourier modulus error vs. iterations. 


