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Abstract—Synthetic aperture LADAR (SAL) allows high res-
olution imaging of distant objects. Basic SAL image processing
is based on Fast Fourier Transform (FFT) techniques originally
developed for use in radar. These techniques can amplify noise
and limit resolution. More advanced reconstruction techniques
have been proposed for synthetic aperture radar (SAR), but have
not been adapted for SAL. In addition, both conventional SAL
and advanced SAR algorithms reconstruct the complex-valued
reflection coefficient instead of the real-valued reflectance which
leads to speckled images.

In this paper, we present a model-based iterative reconstruc-
tion (MBIR) algorithm designed specifically for SAL. Rather
than estimating the reflection coefficient, we propose estimating
its variance which is equal to the reflectance, a function that
more closely resembles conventional optical images. A Bayesian
framework is used to find the maximum a posteriori (MAP)
estimate for the reflectance using a Q-Generalized Gaussian
Markov Random Field (QGGMRF) prior model. The QGGMRF
is able to model complex correlations between neighboring pixels
which promotes a smooth and more natural looking image. The
expectation-maximization (EM) algorithm is used to derive a
surrogate for the MAP cost function. Finally, the proposed MBIR
algorithm is tested on both simulated and experimental data. Re-
sults show significant and consistent improvements over existing
reconstruction techniques in terms of image contrast, speckle
reduction, autofocus, and low signal-to-noise ratio performance.

Index Terms—Synthetic Aperture LADAR, model-based it-
erative reconstruction, maximum a posteriori estimate, speckle
reduction

I. INTRODUCTION

SPOTLIGHT-MODE synthetic aperture laser radar (SAL)
allows high-resolution imaging beyond the diffraction

limit of conventional optics. It is based on the same concept as
synthetic aperture radar (SAR); however, SAL uses coherent
laser radar (LADAR) at optical wavelengths, instead of the
microwaves used in SAR.

While the concept of SAL is similar to SAR, the much
shorter wavelength of light versus microwaves has a number
of profound implications. First, the short wavelengths used
for SAL allow high resolution images to be obtained with
much smaller synthetic apertures than is possible with SAR.
Second, at optical wavelengths, the micro structures of objects
act as scatterers. Therefore, each SAL pixel typically contains
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many scatterers resulting in images that more closely resemble
conventional optical images. This contrasts with SAR images
that are typically formed from groupings of large discrete
scatters known as point clouds.

Despite the differences, modern SAL image processing is
based on the Fourier reconstruction techniques initially used
in SAR [1]–[6], specifically stretch or deramp processing [7],
[8]. These techniques assume that the collected data can be
approximated as spatial-frequency information on a Cartesian
grid; hence a windowed, fast Fourier transform (FFT) is
used to estimate the complex-valued reflection coefficient of
the object [8]. Images are commonly formed by taking the
amplitude squared of the reflection coefficient.

FFT-based reconstructions (FBR) have several undesirable
characteristics. First, they tend to amplify noise and overfit
the data. They also suffer from low resolution and artifacts
due to sidelobes. Finally, and perhaps most importantly, they
produce an estimate of the magnitude squared of the reflection
coefficient, creating a speckled image with high variation that
can obscure image details.

More specifically, if we denote the reflection coefficient by
the complex number g, then g will have uniformly distributed
phase for a surface that is rough relative to the wavelength [9].
This uniformly distributed phase implies that |g| will have
rapid spatial variation, and this rapid variation is convention-
ally known as speckle. However, the reflectance defined by

r = E[|g|2], (1)

is much smoother spatially because it is given by the expecta-
tion of the reflection coefficient [10], [11]. For the application
of SAL, the reflectance, r, is of greater interest since it is
proportional to the expected energy reflected from the object.

More advanced techniques have been developed for SAR
image processing but have not been adapted for non-sparse
scenes encountered in SAL. These advanced techniques have
moved away from Fourier reconstructions towards regularized
inversion methods [12]–[22]. Such approaches have largely
been based on a Bayesian framework, either explicitly or
implicitly, and can be viewed as finding the maximum a
posteriori (MAP) estimate of the reflection coefficient using
sparsity-inducing priors [13].

The advanced SAR techniques which assume sparsity in
the image domain can be characterized into two main groups
based on the type of prior model used. The first group
of sparsity-enforcing approaches is known as sparse recon-
struction or compressed sensing [12]–[18]. These techniques
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generally use an L1 norm on the magnitude of the reflec-
tion coefficient, which can be considered a Laplacian prior
in the Bayesian framework. Ren and Sun have proposed
the adaptation of sparse reconstruction methods to the SAL
problem [23]. Their method was shown to be robust to
missing aperture data. However, the L1 norm regularization
implicitly assumes sparse point clouds of scatterers, which
is typically not the case for SAL imaging scenarios. This
limits the effectiveness of regularization and results in speckled
reconstructions.

The second group of sparsity-enforcing approaches which
share some similarities with this work are based on Sparse
Bayesian Learning (SBL) and Variational Bayesian Approxi-
mation (VBA) [19]–[22], [24], [25]. They assume the prior
distribution of the reflection coefficient, g, is a zero-mean
complex Gaussian which is independent but not identically
distributed. At each point, the reflectance (i.e., the variance
of the reflection coefficient) is modeled as an independent
Gamma distributed hyper parameter [25]. SBL and VBA have
been shown to outperform sparse reconstruction techniques at
low signal-to-noise ratios (SNR) [20]. However, once again
these algorithms are designed to reconstruct the spatial point
clouds that occur in SAR images. So they do not enforce
spatial smoothness and they result in speckled reconstructions.

Cetin and Karl proposed an algorithm that promotes both
sparsity and smoothness in the reconstruction by enforcing
penalties on the L1 norms of the magnitude of the reflec-
tion coefficient and the gradient of the magnitude [12]. The
algorithm, which we will refer to as Feature-Enhanced SAR
(FESAR), uses the two penalty terms to suppress the noise
while preserving image features. However, the algorithm was
designed for SAR and is based on regularization of the
reflection coefficient magnitude, |g|, rather than its expected
value, r.

In this paper, we propose a model-based iterative recon-
struction (MBIR) technique designed specifically for SAL
which both leverages the benefits of Bayesian estimation and
is grounded in the physics of optical radar. A preliminary
version of our research was first published at [26]. The major
contributions are:

1) Estimation of reflectance: Rather than estimating the
reflection coefficient as is done in existing SAR and SAL
imaging, we propose to estimate its variance which is equal to
the reflectance [11]. The reflectance produces images which
appear more like natural optical images and allows exploitation
of high spatial correlation during regularization.

2) Bayesian Framework using an Appropriate Prior Model:
A Bayesian approach is taken to find the MAP estimate of
the reflectance and to compute unknown phase errors. The Q-
Generalized Gaussian Markov Random Field (QGGMRF) is
proposed as an appropriate physics-based choice for a prior
distribution [27] of the reflectance. It can model intricate two-
dimensional dependencies and promotes smoothness in the
reconstructed image.

3) Tractable Cost Minimization using EM Algorithm: Find-
ing the MAP estimate of the reflectance requires optimization
of a nonconvex cost function, which can be difficult and com-
putationally expensive. Therefore we use the EM algorithm

to derive a more-tractable surrogate function. The MAP/EM
framework is also used to estimate nuisance parameters. These
include phase errors that blur the reconstruction.

4) Verification using Simulated and Experimental Data:
The proposed algorithm is tested using simulated data gen-
erated by the Air Force Research Laboratory’s (AFRL’s)
simulation tool SimISAL [28]. Experiments are carried out to
investigate how well the algorithm performs in low signal-to-
noise ratio (SNR) conditions with i.i.d. uniformly distributed
phase errors. Finally, the algorithm is tested on data produced
in the bench-top SAL laboratory at NASA’s Jet Propulsion
Laboratory (JPL). Results show significant and consistent
improvements over standard SAL FFT-based reconstructions
in terms of image contrast, speckle reduction, autofocus, and
low-noise performance.

II. ESTIMATION SCHEME

A. Variable of Interest

Prior to developing an estimation framework, we must first
determine what we wish to recover. Fig. 1 presents an example
imaging scenario for an Inverse SAL (ISAL) system, along
with the various quantities of interest. In the scenario, a
telescope transmits and receives pulses that travel through
the atmosphere, and are reflected off of an object with a
real-valued reflectance function r. The figure includes the
phenomenon which can degrade images. These include a time-
varying phase error φ(t) caused by the atmosphere, speckle
variations in the magnitude of the reflection coefficient, g, and
measurement noise σ2

w. Most importantly Fig. 1 illustrates that
there is a difference between the object’s reflectance, r, which
we are accustomed to seeing in conventional images, and the
reflection coefficient, g, a byproduct of coherent imaging.

Let us denote r ∈ RN and g ∈ CN as a column vectors
whose components represent the reflectance, and reflection
coefficients, respectively, of individual pixels. For a natural
image under ambient illumination, the reflectance at each
pixel, ri, is the incoherent sum of the reflectivity from many
small scatters which make up a pixel. Alternatively, due to the
coherent illumination, SAL measures the coherent sum of the
scatterers reflectivity gi. For surfaces which are rough relative
to the observation wavelength, the value gi at each pixel can be
modeled as the sum of many complex numbers corresponding
to individual scatters with random phase. Therefore, by the
central limit theorem, we can accurately model gi as a complex
Gaussian random variable with zero mean and a variance equal
to the reflectance ri, in accordance with Eq. (1). The elements
of g are spatially uncorrelated due to the i.i.d. uniformly
distributed random phase. In addition, the spatial correlation
of its magnitude is small. Therefore, direct regularization of
g, |g|, or |g|2 can not fully exploit the spatial correlation of
the underlying reflectance, r.

To illustrate this, consider the one-dimensional example
shown in Fig. 2. A reflectance vector r is given along with the
corresponding reflection coefficient, g. It is easy to see that r is
highly correlated between neighboring samples but |g| is only
loosely correlated, and the phase is completely uncorrelated
and independent. Estimating the reflectance, r, instead of the
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Fig. 1. Example concept for a ground based ISAL system used for imaging
objects in space. The target has a reflection coefficient, g, with a variance at
each point equal to the reflectance function r. The coordinate system x, y, z
is centered on the object with z representing the line-of-sight vector. Object
motion is a rotation around thy y-axis. The atmosphere imparts an unknown,
time varying phase error φ(t). Finally, the noisy data y (with noise power
σ2
w) is recorded to disk for processing.
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Fig. 2. Subplot (a) shows an example of a reflectance function r. Subplot
(b) is the amplitude of the complex Gaussian reflectivity g corresponding to
r. Subplot (c) shows the phase of g. Neighboring samples of r are highly
correlated, however the amplitude of g is only loosely correlated and its phase
is uncorrelated and independent.

reflection coefficient, g, enables us to fully utilize its spatial
correlation when using a Bayesian framework. This helps to
better constrain the estimation process and produces more
natural looking images.

B. Bayesian Framework

Our goal is to compute the MAP estimate of r.1 To do
so, we must also estimate the phase errors, φ, and the noise

1In practice, the quantity we estimate is proportional to the actual re-
flectance by an unknown multiplicative constant α.

variance, σ2
w. The joint estimates are given by

(r̂, φ̂, σ̂2
w) = argmin

r,φ,σ2
w∈Ω

{− log pθ (r|y)} ,

= argmin
r,φ,σ2

w∈Ω

{− log pθ (y|r)− log p (r)} ,
(2)

where Ω represents the jointly-feasible set and the subscript
θ = [φ, σ2

w] indicates a dependance on the phase errors and
noise variance.

To compute the likelihood function pθ (y|r), we use the
reflection coefficient vector, g, to relate the reflectance vector,
r to the data vector, y. It will be shown that the conditional
distribution of the data, given g and an additive white-noise
model, is a complex Gaussian. Its distribution is given by

pθ(y|g) =
1

πM (σ2
w)
M

exp

{
− 1

σ2
w

||y −Aφg||22
}
, (3)

where y ∈ CM , σ2
w is the noise variance, and A ∈ CM×N is

the linear forward-model operator. The subscript φ indicates
the dependance of A on the phase errors.

The components of the reflection coefficient vector, g, are
uncorrelated but not independent since the components of r
are not independent. However, g is conditionally indepen-
dent given r. Therefore, we can write the joint, conditional
probability distribution of the reflection coefficients given the
reflectance as

p(g|r) =
1

πN |D(r)|
exp

{
−gHD(r)−1g

}
, (4)

where H indicates the Hermitian transpose and D(r) is a
matrix with diagonal elements equal to the vector r. The
resulting likelihood function is given by [29]

pθ(y|r) =
1

πN |Cy|r,θ|
exp

{
−yHC−1

y|r,θy
}
, (5)

where
Cy|r,θ = AφD(r)AHφ + σ2

wI . (6)

With the likelihood function specified in Eq. (5), the MAP
cost function can be written as

f(r, θ) =− log pθ (y|r)− log p (r) ,

= log |Cy|r,θ|+ yHC−1
y|r,θy − log p (r) .

(7)

C. MAP Estimation Using the EM Algorithm

Optimization of Eq. (7) is not tractable due to the determi-
nant and inverse in the likelihood function. Instead, we propose
to use the EM algorithm to replace the cost function with
a more tractable function. A logical choice for the missing
data is the reflection coefficient, g. Given this choice, the
replacement function is given by

Q(r, θ; r′, θ′) = −E [log pθ(y, g |r)|Y = y, r′, θ′]− log p (r) ,
(8)

where r′ and θ′ are the current estimates of r and θ, respec-
tively. In this paper we will only consider cases where A is a
non-normalized unitary matrix. We will see that this allows us
to compute Q exactly which constitutes the E-step of the EM
algorithm. Fig. 3 shows the alternating minimization approach
used for implementing the M-step of the EM algorithm.
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Repeat{
r̂ ← argmin

r
Q(r, θ′; r′, θ′)

θ̂ ← argmin
θ

Q(r′, θ; r′, θ′)

r′ ← r̂
θ′ ← θ̂

}

Fig. 3. Steps of the EM algorithm for joint optimization of the MAP cost
function surrogate

The algorithm proposed in Fig. 3 inherits the standard
convergence properties of the EM algorithm for problems of
this nature. It can be shown that Q(r, θ; r′, θ′) is an upper-
bounding surrogate function such that minimization of Q
implies minimization of f [30]–[33]. That is

{Q(r, θ; r′, θ′) < Q(r′, θ′; r′, θ′)} ⇒ {f(r, θ) < f(r′, θ′)} .
(9)

Convergence properties of the EM algorithm are presented
in [30]–[33]. In particular, Theorem 4.1 of [32], states that
since f is monotonically decreased by the sequence of points
generated from surrogate optimization, f converges to some
limit f∗. Generally speaking, the EM algorithm converges in
a stable manner to a local minima.

Since the MAP cost function is nonconvex, f∗ will depend
on the initial conditions and may not be the global minimum.
Later, in Sec. IV.C, a heuristic is described which was found
to be effective for initialization. In addition, like other noncon-
vex problems, reconstruction may be ill-posed as defined by
Tikhonov [34]. Specifically, stability is not guaranteed since
the MAP estimate may not be a continuous function of the
data.

The remaining sections of this paper are organized as
follows: In Sec. III we provide a derivation of the forward
model and present the QGGMRF as our prior. Section IV
discusses the the EM algorithm. Specifically, we show how
Q is computed using the posterior distribution of the hidden
data, and we explain the optimization algorithm. Section V
presents results of the proposed algorithm for both simulated
and experimental data. Final conclusions are discussed in Sec.
VI.

III. MEASUREMENT AND PRIOR MODELS

A. Continuous Measurement Model

Let g̃(x, y, z) represent the continuous reflection-coefficient
function for the object being imaged. Continuous functions for
which we also introduce a discrete version will be denoted
with a tilde. Using the object-centered coordinate system
depicted in Fig. 1, it is assumed without loss of generality, that
the object is rotating around the y axis. Given this geometry,
a synthetic-aperture system is able to resolve a projection of
the object in the x− z plane given by

g̃(x, z) =

∫ ∞
−∞

g̃(x, y, z)dy, (10)

subject to any shadowing for opaque objects.

Fig. 4. Simplified representation of the heterodyne detection process.

The linear-frequency-modulated (LFM) chirped waveform
transmitted from a SAL system is given by the analytical
function

Ut (t) = ejφt(t), for 0 ≤ t ≤ τc, (11)

with phase

φt(t) = ωct+ βt2, (12)

where ωc is the optical carrier frequency in radians, β is the
chirp rate (2β has units of rad/s2) and τc is the chirp length
in seconds [8]. The spatial envelope of the transmitted pulse is
assumed to be uniform across the x− y plane and rectangular
along the z dimension. In addition, the spatial length of the
pulse is assumed to be much larger than the depth of the object
being imaged.

The return field at the receiver is then given by

Ur (t) =

∫∫ ∞
−∞

g̃(x, z)ejφr(t,x,z)dxdz, (13)

where the return phase from each point, φr(t, x, z), is a
delayed version of the transmitted phase, plus any phase errors,
given by

φr (t, x, z) = φt

(
t− 2z

c
− 2ϕ̃(t)x

c

)
+ φ̃(t) . (14)

The variable ϕ̃(t) is the rotation angle of the object at time
t, and φ̃(t) represents the time-varying phase errors. Without
loss of generality, the overall propagation time between the
transmitter and the object can be ignored.

Standard optical heterodyne detection is performed by mix-
ing the received signal, Ur(t), with a local oscillator formed
by the transmitted signal, Ut(t) [10], [11], [35]. The system
is assumed to be shot-noise limited with noise driven by the
power of the local oscillator. Fig. 4 presents a simplified
representation of the detection process. The demodulated and
filtered output signal is given by

ỹ(t) = s(t) + w̃(t), (15)

where w̃(t) is additive, zero-mean, complex Gaussian white
noise, and

s(t) = Ut(t)U
∗
r (t),

= e−jφ(t)

∫∫ ∞
−∞

g̃(x, z) ej∆φ(t,x,z)dxdz,
(16)
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where ∗ indicates the complex conjugate. The phase
∆φ(t, x, z), is the difference between the reference waveform
phase and the return phase, and is given by

∆φ(t, x, z) = φt(t, x, z)− φr(t, x, z)

=
2ωcϕ̃(t)x

c
+

4zβt

c
+

4βtϕ̃(t)x

c
+

4βϕ̃(t)2(t)x2

c2

+
8βzϕ̃(t)x

c2
− φ̃(t) + φc,

(17)
where φc is the sum of all constant phase terms. The constant
terms can be ignored since only the time-varying phase
contributes to image formation. Terms in Eq. (17) with c2

in the denominator are small and can be dropped. As shown
in App. A, the term 4βtϕ̃(t)x/c is also negligible for typical
imaging scenarios. Therefore, Eq. (17) reduces to

∆φ(t, x, z) ≈ 2ωcϕ̃(t)x

c
+

4zβt

c
− φ̃(t),

≈ 2π

[
2ϕ̃(t)

λ
x+

2βt

πc
z

]
− φ̃(t) .

(18)

where λ = 2πc/ωc is the laser wavelength. The resulting
demodulated signal may therefore be approximated as

ỹ(t) ≈ e−jφ̃(t)

∫∫ ∞
−∞

g̃(x, z) ej2π[ 2ϕ̃(t)
λ x+ 2βt

πc z]dxdz + w̃(t) .

(19)

B. Discrete Measurement Model

Equation (19) is continuous in time and space, and only
valid for a single pulse duration. We wish to represent the
signal as temporally discrete in terms of both the sample and
pulse indices. For a system that transmits pulses back to back
with period τc (i.e. 100% duty cycle), the qth sample of the
pth pulse occurs at time

t = pτc + qτd, (20)

where τd is the detector integration period. The temporally-
discrete analytical signal can then be represented as

y(p, q) = ỹ(pτc + qτd) . (21)

We can also represent the continuous object, g̃(x, z), as a
discrete space signal, g(k, l), using the relationship

g̃(x, z) =
∑
k,l

g(k, l) h̃ (x− kδx, z − lδz) , (22)

where h̃ is the interpolating basis function, δx, δz are the
spatial sampling periods, and k, l are the sample indices.
For a Nyquist-sampled, band-limited signal, h̃ is a sinc with
cutoff frequency fc = (1/δx, 1/δz). Substituting Eq. (22) into
Eq. (21) results in

y(p, q) = e−jφ(p,q)

∫∫ ∞
−∞

∑
k,l

g(k, l) h̃ (x− kδx, z − lδz)

∗ ej2π
[

2ϕ(p,q)
λ x+

2β(pτc+qτd)

πc z
]
dxdz + w(p, q),

(23)
where we define

ϕ(p, q) = ϕ̃(pτc + qτd), (24)

ξ
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𝑝
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𝑞

1

2
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Fig. 5. Skewed DSFT samples corresponding to Eq. (29) for a linearly
rotating object. The Samples for each pulse span both dimensions in the
spatial-frequency domain.

as the discrete rotation angle, and

φ(p, q) = φ̃(pτc + qτd), (25)

as the discrete phase error function. The term w(p, q) is the
measurement noise at each sample which is assumed to be
i.i.d. complex Gaussian with variance σ2

w.
Equation (23) can be written more simply as

y(p, q) = e−jφ(p,q)H̃

(
−2ϕ(p, q)

λ
,−2βqτd

πc

)
∗G

(
−4πϕ(p, q)δx

λ
,−4βqτdδz

c

)
+ w(p, q),

(26)
where H̃ is the Continuous Space Fourier Transform (CSFT)
of h̃ given by

H̃(u, v) =

∫∫ ∞
−∞

h̃(x, z)e−j2π(ux+vz), (27)

and G is the discrete-space Fourier transform (DSFT) of g
given by

G(ξ, ν) =
∑
k,l

g(k, l)e−j(ξk+νl) . (28)

Given the form of Eq. (26) we see that the data are samples
of the DSFT of g(k, l) at frequencies

ξ(p, q) = −4πϕ(p, q)δx
λ

, ν(q) = −4βqτdδz
c

. (29)

Note that the rotation angle ϕ, and therefore ξ, is a function of
both p and q, whereas ν is only a function of q. For a constant
rotational velocity we get linear changes in both phase terms
from sample to sample, meaning that the data traces a diagonal
line in the spatial-frequency domain. Fig. 5 shows a sample
pattern in the frequency domain for such a case. As the object
rotates over the period of a single pulse, the value of both ν
and ξ change, creating a skewed pattern. In the special case
that the sample locations can be approximated as a Cartesian
grid with ξ(p, q) ≈ ξ(p), then G would correspond to the FFT
of g. This approximation is commonly assumed in traditional
SAL processing [1]–[6].
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Equation (26) can be represented in matrix-vector notation
as

y = Ag + w, (30)

where y ∈ CM , g ∈ CN , and A ∈ CM×N . The measurement
noise vector has a complex normal distribution given by

w ∼ CN
(
0, σ2

wI
)
, (31)

where I is the identity matrix. The linear forward model
operator can be expanded as

A = D(φ)HD, (32)

where D(φ) ∈ CM×M is a diagonalization of the phase
error vector φ, H ∈ CM×M is the reconstruction filter for
the interpolation basis function, and D ∈ CM×N directly
evaluates the DSFT samples of g.

In order to make evaluation of the sampled DSFT compu-
tationally tractable, advanced interpolation techniques such as
the Nonuniform FFT (NUFFT) are required [36]. Such tech-
niques have been designed to minimize error. Reference [36]
approximates D as

D ≈ V FS, (33)

where V is an M×K sparse interpolation matrix, F is a K×N
oversampled DFT matrix with samples on a Cartesian grid, and
S is a N ×N matrix of scaling factors used by the NUFFT
algorithm to minimize errors. Both V and S are found by
minimizing the worst-case approximation error for a specific
geometry. The matrix A can therefore be approximated as

A ≈ D(φ)HV FS . (34)

C. Prior Model

A Q-Generalized Gaussian Markov Random Field (QG-
GMRF) was used as a prior model [27]. QGGMRF is based
on a pair-wise Gibbs distribution given by [33]

p (r) =
1

z
exp

− ∑
{i,j}∈P

bi,jρ (∆)

 , (35)

where z is the partition function, bi,j is the weight between
neighboring pixel pairs ri and rj , ∆ = ri − rj , P is the set
of all pair-wise cliques falling within the same neighborhood,
and ρ(·) is the potential function [33]. The QGGMRF potential
function is given by

ρ

(
∆

σr

)
=
|∆|p

pσpr

(
| ∆
Tσr
|q−p

1 + | ∆
Tσr
|q−p

)
, (36)

where T is a unitless threshold value which controls the
transition of the potential function from having the exponent
q (typically q = 2) to having the exponent p. The variable σr
controls the variation in r̂.

The parameters of the QGGMRF potential function affect
the influence neighboring pixels have on one another. As the
value of p increases, pixels which are far apart in value have
more influence on each other. This can help reduce variation
due to noise but may also blur edges. As p decreases, the
influence of pixels far in value is significantly decreased. This

helps preserve edges. Typically, p is greater than one (around
1.1 or 1.2) to ensure a strictly-convex prior model, and we vary
T to control the influence function. The value of T controls
how close in value pixels must be to have a strong influence
on each other. For small T and p ≈ 1, the potential function
resembles that of a total-variation prior. For large T and q =
2, the potential function acts as that of a Gaussian prior for
all but the most-differently-valued pixels. Finally, σr is used
to control the amount of regularization. A large σr will lead
to reconstructions with higher variation and that more-closely
match the data. Lower values of σr reduce variation in the
reconstruction.

While there are many prior models that can be used, such
as those in [37]–[39], the utility of QGGMRF has been
successfully demonstrated in practice for applications such as
medical imaging [27]. The QGGMRF model is capable of
simultaneously preserving edges and smoothing homogeneous
areas. In addition, its potential function is both convex and
continuously differentiable, which is important for optimiza-
tion. Finally, the shape of the potential function can be easily
tuned for the application at hand.

IV. ALGORITHM

In the following sections, we describe the steps of our algo-
rithm. First, we derive a closed-form expression for Q. Second
we propose a method to minimize Q based on alternating
minimization of r and the parameters of θ. Lastly, we describe
the initialization process, stopping criteria, and complexity.

A. Derivation of MAP Surrogate Function

With the forward and prior models specified, we can
evaluate the surrogate Q(r, θ; r′, θ′). To do so, we start by
expanding the argument of the expectation in Eq. (8) using
Bayes’ theorem. This gives

Q(r, θ; r′, θ′) =− E [log pθ(y|g, r) + log p(g|r) |Y = y, r′, θ′]

− log p (r) ,

=M log σ2
w + E

[
1

σ2
w

||y −Aφg||2 |Y = y, r′, θ′
]

+ log |D(r)|+
N∑
i=1

1

ri
E
[
|gi|2 |Y = y, r′, θ′

]
+

∑
{i,j}∈P

bi,jρ

(
∆

σr

)
,

(37)
where pθ(y|g, r) = pθ(y|g).

In order to evaluate the expectation in Eq. (37), the con-
ditional posterior distribution of g must be specified. Using
Bayes’ theorem, it can be written as

pθ(g|y, r) =
pθ(y|g)p(g|r)
pθ(y|r)

,

=
1

z
exp

{
− 1

σ2
w

||y −Aφg||2 − gHD(r)−1g

}
,

(38)
where z is the partition function which has absorbed any
exponential terms that are constant with respect to g. By
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expanding the exponent and completing the square, it can be
shown that the conditional posterior is a complex Gaussian
with mean

µ = C
1

σ2
w

AHφ y, (39)

and covariance

C =

[
1

σ2
w

AHφ Aφ +D(r)−1

]−1

. (40)

To find µ, we use Gradient Descent with Line Search
(GDLS) to maximize the posterior distribution with respect
to g. Since the distribution is quadratic, the optimal step size
can be computed in closed form [33].

Evaluation of the posterior covariance C requires inversion
of a large and dense matrix. In this paper we will only consider
cases where the object rotation is linear and M = N (condi-
tions which are the basis for all Fourier-based reconstructions).
It is shown in App. B that when these conditions hold, A is
a non-normalized unitary matrix which means AHA = MI .
For such cases, C becomes

C =

[
M

σ2
w

I +D(r)−1

]−1

= D

(
σ2
w

M +
σ2
w

r

)
. (41)

For non-unitary cases, C must be computed directly, which is
a non-trivial task, or approximations must be used.

With the posterior distribution specified, the expectation in
Eq. (37) can be evaluated. The resulting final form of the MAP
surrogate is given by

Q(r, θ; r′, θ′) =M log σ2
w +

1

σ2
w

yHy − 1

σ2
w

2Re
{
yHAφµ

}
+
M

σ2
w

N∑
i=1

(
Ci,i + |µi|2

)
+ log |D(r)|

+
N∑
i=1

1

ri

(
Ci,i + |µi|2

)
+

∑
{i,j}∈P

bi,jρ

(
∆

σr

)
+ c .

(42)
where c represents the terms constant with respect to r and θ.

B. Optimization of MAP Surrogate Function

As shown in Fig. 3, we use alternating minimization to
implement the M-step of the EM algorithm. In the sections
below, we derive the updates for the optimization with respect
to r, φ, and σ2

w, and we propose stoping criteria.
1) Reflectance Update: The positivity constraint on r and

non-convex cost function given by Eq. (42) make Iterative
Coordinate Descent (ICD) an attractive choice for optimiza-
tion [33]. The update for the sth pixel is given by

r∗s = argmin
rs∈R+

log rs +
Cs,s + |µs|2

rs
+
∑
j∈∂s

bs,jρ

(
rs − rj
σr

) .

(43)
Minimization is carried out with a 1D line-search over R+.

2) Noise Power Update: Taking the derivative of Eq. (42)
with respect to σ2

w and rooting provides a closed form solution
for the update of the noise variance which is given by

σ̂2
w =

1

M
yHy − 2

M
Re
{
yHAφµ

}
+

N∑
i=1

(
Ci,i + |µi|2

)
.

(44)
3) Phase Error Estimation: The phase error vector is

updated by minimizing Eq. (42) with respect to φ. The update
is given by

φ∗ = argmin
φ∈Ω

{
−Re

(
yHAφµ

)
+ c
}
,

= argmin
φ∈Ω

{
−Re

(
yHD(φ)HDµ

)
+ c
}
,

(45)

where c are the terms in Eq. (42) which are constant with
respect to φ. To simplify optimization we can write the
elements of the phase error vector as φi = eψi and optimize
over the real-valued phase, ψi, for each element. In addition,
it is common that neighboring samples share the same phase
error. For example, all samples of a single pulse may have
the same atmospheric phase error when the pulse is short
compared to the atmospheric coherence time. In such cases,
the variance of the estimator can be reduced by averaging
individual estimates [8]. Therefore, the estimated phase error
for each group, p, is given by

φp = eψ
∗
p , (46)

where

ψ∗p = argmin
ψ∈Ω

{
−Re

(
yHp e

iψ [HDµ]p

)}
, (47)

The subscript p indicates that just the elements of the vector
belonging to the group p are used.

4) Stopping Criteria: To determine when the algorithm
should be stopped, we can use either a set number of iterations,
NK , or a metric such as

ε =
||rk − rk−1||
||rk−1||

, (48)

where k is the iteration index, and the algorithm is stopped
when ε falls below a threshold value of εT . Fig. 6 summarizes
the steps of the EM algorithm

C. Initialization

We found that an iterative initialization process consistently
produced initial conditions which resulted in focused images,
even at very-low SNRs. Fig. 7 details the steps of this iterative
process. The initial estimate of the phase-error vector is given
by

φ̂PGA = PGA(y), (49)

where the operator PGA(y) indicates the application of the
standard Phase Gradient Autofocus (PGA) algorithm to y [8].

Next, for some set number of outer-loop iterations, NL,
we allow the EM algorithm to run for NK iterations. At the
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Iterative EM {
Inputs: y, r′, φ′, σr, σ2′

w , q, p, T, b, (either NK or εT )
Outputs: r̂, φ̂
while k < NK or ε > εT do

µ← argmin
g
{− log pθ(g|Y = y, r′, θ′)}

C ← D
(

σ2
w

M+
σ2w
r′

)
for all s ∈ S do

rs = argmin
rs∈R+

{
log rs +

Cs,s+|µs|2
rs

+
∑
j bs,jρ

(
rs−rj
σr

)}
end for
σ2
w ← 1

M yHy− 2
M Re

{
yHAφµ

}
+
∑N
i=1

(
Ci,i + |µi|2

)
for all p ∈ P do

ψ∗p = argmin
ψ∈Ω

{
−Re

(
yHp e

iψ [HDµ]p

)}
φp ← eψ

∗
p

end for
end while
}

Fig. 6. EM algorithm for MAP estimate of r. S is the set of all pixels, P is
the set of all pixel groups which share the same phase errors.

beginning of each outer-loop iteration, we initialize/reinitialize
according to

r ← |AHy|◦2,

σr ←
1

γ

√
var (r),

σ2
w ← var(y),

(50)

where | · |◦2 indicates the element-wise magnitude square of
a vector, and γ is a unitless parameter introduced to tune the
amount of regularization. The operator var(x), for any vector,
x, is the sample variance defined as

var(x) =
1

M

M∑
i=1

xi − 1

M

M∑
j=1

xj

2

. (51)

After the outer loop runs NL times, we again reinitialize
according to Eq. (50) and run the EM algorithm until it reaches
the stopping threshold εT . We found that a Gaussian prior
model worked best in the outer loop for the initialization
of φ, especially at low SNRs. Specifically, we used q = 2,
p = 2, T = 1, and b = G(0.8), where G(σ) indicates
a 3 × 3 Gaussian kernel with standard deviation σ. Once
the initialization process was complete, different prior-model
parameters could be used for the actual reconstruction.

We conjecture that the proposed iterative process may help
avoid local minima; however, this cannot be easily verified
since evaluation of the cost function given in Eq. (7) would
require the determinant and inversion of a 2002 × 2002

covariance matrix given by Eq. (6). As a result, evaluating the
cost function to verify this idea is a non-tractable problem.

D. Complexity
The complexity of the proposed algorithm described in

Fig. 6 is driven by the iterative updates of the five main

MBIR Algorithm {
Inputs: y, γ, q, p, T, b, NK , NL, εT
Outputs: r̂
φ← φ̂PGA
for i = 1 : NL do

r ← |AHy|◦2, σr ← 1
γ

√
var (r), σ2

w ← var(y)

φ← Iterative EM
{
y, r, φ, σr, σ

2
w, 2, 2, 1, G(0.8), NK

}
end for
r ← |AHy|◦2, σr ← 1

γ

√
var (r), σ2

w ← var(y)

r ← Iterative EM
{
y, r, φ, σr, σ

2
w, q, p, T, b, εT

}
}

Fig. 7. Algorithm which initializes and runs the EM algorithm. An iterative
process is used to initialize the phase error vector φ. G(σ) indicates a 3× 3
Gaussian kernel with standard deviation σ.
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Fig. 8. Scalability of the proposed algorithm is shown to be linear in time
with respect to the input/output size for M = N . The average time was
computed from 10 iterations.

variables, µ, C, r, σ2
w, and φ. In particular, updating µ, σ2

w, and
φ require multiplication by the forward-model operator, Aφ,
which has a complexity O(N2). Fortunately, the use of the
NUFFT allows us to reduce the complexity to O(K logN),
where K is the length of the oversampled FFT used, and was
set to K = 2N in this work. Since we are limiting ourselves
to cases where AHA = MI , updating C becomes trivial using
Eq. (41), which has a complexity O(N). The ICD updates of
r also scale with complexity O(N).

Therefore, for very large N , the complexity of the proposed
algorithm is dominated by the NUFFT and is on the order of
O(K logN). However, for practical values of N , the NUFFT
is efficient, and the computation time is dominated by the
ICD updates. Figure 8 shows the average time required for
each iteration of the EM algorithm as a function of the
input/output size for M = N . The reconstructions were run
in MATLAB using a computer with a 2.6 GHz Intel Core i7
processor. The results show an approximately-linear increase
in the computation time as a function of the input/output size.
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V. RESULTS

In this section, results are presented for data generated
from the AFRL simulation tool SimISAL [28], and from data
produced in the ISAL laboratory at JPL [40], [41].

A. Simulated Data

SimISAL is a high-fidelity wave-optics MATLAB simulation
tool used to simulate ISAL imaging of objects in space [28]. It
models many of the physical effects that degrade real data as
well as their dependent interactions, and was used to generate
simulated data for the following experiments.

Fig. 9 shows a generic test pattern with an arbitrary grid
size, L, that was chosen as the target. Subplot (a) shows
the reflectance as a function of range, z, and cross-range,
x, and Subplot (d) shows the corresponding velocity map.
Table I specifies the parameters used for simulation and MBIR
reconstruction. Phase errors were included by adding i.i.d.
uniformly distributed phase to each pulse (i.e. all samples of
a single pulse had the same phase error). Simulations were
conducted for three different levels of measurement noise,
which we denote as Case 1, Case 2, and Case 3. These cases
correspond to medium, low, and very low SNR levels, where
SNR is defined as

SNR =
var(Ag)

var(w)
, (52)

and g is a single realization of the random reflection-coefficient
vector, given the reflectance, r. This definition of SNR is
approximately equal to the range-compressed carrier-to-noise
ratio (CNR), which is typically used in assessing the perfor-
mance of SAR/SAL autofocus algorithms [42], [43].

FBR images were formed according to

r̂FBR = |WFFTD(T )D(φ̂PGA)y|◦2, (53)

where WFFT is a two-dimensional FFT matrix, and T is M×1
vector of weights corresponding to a Taylor window produced
in MATLAB. FESAR images were formed according to Sec.
IV-C of [12] using the parameters given in Table V-A and the
stopping criteria given by Eq. (48). Since the algorithm in [12]
does not correct phase errors2, we only compare FESAR
results for cases when the phase errors were known.

To compute α, the unknown scaling constant between r and
the reconstructions r̂, we find the least squares fit given by

α∗ = argmin
α

{
||αr̂ − r||2

}
. (54)

We then measure the reconstruction distortion using normal-
ized root mean square error (NRMSE) which we define as

NRMSE =

√
||α∗r̂ − r||2
||r||2

. (55)

To emphasize a balance between the amount of regularization
and the resolution, we also measured the Structural Similarity
Index (SSIM) over an area with high-spatial frequency content.

2Phase error correction was incorporated into the point-based algorithms
of [15], [16], [44], [45], but not for the feature-based algorithms of [12],
[46], [47].
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Fig. 9. Generic test pattern used for simulation input; (a) top-down view of
the object’s reflectance as a function of range, z, and cross-range, x, (b) the
corresponding velocity map. The support of the test pattern is approximately
square with width 3/4 L, where L is the grid length. The input target array
was sampled with period L/1024 in both dimensions. The white dotted line
in (a) indicates the area containing high-spatial-frequency content that was
used to optimize model parameters.

TABLE I
PARAMETERS OF SIMULATION AND RECONSTRUCTION FOR CASES 1-3
Item Value Units
Object Sampling Periods, δx, δz L/1024 m

Rotation rate, θ̇ 1 µrad/s
Wavelength, λ 1 µm
Chirp Rate, β 200πc rad/s2

Chirp length, τc 1/(2L) s
PRF 2L Hz
Acquisition Time, τs 100/L s
Sample Period, τd 1/(800L) s
Phase Error vector, φ ∼

uniform(−π, π)
rad

Data Size, M 2002 -
SNR [Case 1, Case 2, Case 3] [3, 1, 0.3] -
Reconstruction Size, N 2002 -
Reconstruction Field of View L× L m
Reconstruction Resolution, (ρx, ρz) (L/200, L/200) m
Reconstruction Filter, H I -
Neighborhood, b 3× 3, G(0.1) pixels
Regularization Tuning Parameter, γ 2 -
QGGMRF Parameter, q 2 -
QGGMRF Parameter, T [0.05, 0.05, 0.1] -
QGGMRF Parameter, p 1.1 -
Reinitialization Parameter, (NL, Nk) (300, 10) iter
FESAR Scale Parameter, λ1 [0.5, 1.5, 2.0] -
FESAR Scale Parameter, λ2 [5.0, 3.0, 3.7] -
FESAR Parameter, ε 5× 102 -
Stoping criteria, εT 1× 10−4 -

Specifically, we made measurements over the white-dotted re-
gion in Fig. 9 (a) using MATLAB’s default SSIM function. For
both FESAR and MBIR, the reconstruction parameters were
chosen to maximize SSIM over this region. This ensured we
obtained the highest quality reconstructions without blurring
the smaller bars in the image.

1) Experiment 1: Variation of QGGMRF Parameters: To
further illustrate how the QGGMRF parameters effect image
quality, we used the simulated data from Case 1 and varied
the reconstruction parameters from the nominal values shown
in Table I. Figure 10 shows the results. The top row shows
how the shape of the potential function changes the output.
The top left is a quasi-TV reconstruction with p = 1.1 and
T = 0.05, the top right is a Gaussian reconstruction with p =
2, and the middle is a hybrid of the two. The results show that
the first reconstruction has sharper edges and reduced speckle
variation. However, looking closely at the smaller bars, we
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TABLE II
NRMSE AND SSIM FOR SIMULATIONS RESULTS (SR) 1 & 2

NRMSE∗ SSIM∗

Case # 1 2 3 1 2 3

SR
1 FBR 1 1 1 1 1 1

FERN 0.48 0.48 0.38 1.6 2.0 2.8
MBIR 0.42 0.34 0.33 4.4 4.7 4.0

SR
2 FBR 1 1 1 1 1 1

MBIR 0.42 0.32 0.24 5.7 6.1 12.0
∗ metics normalized by FBR value for comparison

see that they are starting to blur together, limiting the amount
of regularization that can be applied, as shown in the bottom
row. The Gaussian reconstruction in Fig 10 (c) preserves the
smaller bars, but also allows residual speckle variation in the
homogeneous areas.

The second row of Fig. 10 shows how the choice of scale
parameter impacts the reconstruction. On the bottom left, we
see that choosing a γ which is too small, under regularizes the
image, leaving residual speckle variation. Conversely, on the
bottom right we see that a large γ can reduce speckle variation,
but can also blur image detail around the smaller bars.

2) Experiment 2: Comparison with Known Phase Errors:
In the second experiment, we compare FBR, FESAR, and
MBIR when phase errors are known a priori. Fig. 11 shows
the resulting reconstructions for the parameters specified in
Table I. The measured distortion metics are listed in the top
part of Table II, normalized by the FBR value for easy com-
parison. FESAR significantly reduces the NRMSE compared
to FBR. However, the smaller bars have been blurred and
there still remains significant variation in the homogeneous
areas. Conversely, the proposed MBIR technique produced
lower NRMSE values than FESAR, but with less residual
variation and blurring. This is highlighted by the higher SSIM
values for MBIR. In all three cases, MBIR does an excellent
job at increasing the contrast between the object and the
background, and at reducing speckle variations without the
need for incoherent averaging.

Ideally, we would like to gain insight into the convergence
behavior of the proposed algorithm by plotting cost as a
function of iteration number. Unfortunately our non-tractable
cost function prohibits this. Instead we consider reconstruction
error as a function of iteration number. Figure 12 (a) shows
the NRMSE as a function of iteration number corresponding to
the reconstructions in Fig. 11. We see that FESAR converges
much quicker; however, the final NRMSE values are higher
than those of MBIR. At the two higher SNRs, MBIR achieves
a NRMSE equal to FESAR’s final value in approximately the
same number of iterations. For the lowest SNR, it takes MBIR
approximately twice as many iterations to reach FESAR’s final
value. Figure 12 (a) also shows that we may be able to increase
εT to reduce the number of MBIR iterations with little impact
to the NRMSE.

3) Experiment 3: Comparison with Unknown Phase Errors:
Using the same data, FBR and MBIR were run again with
no prior knowledge of the phase error. Fig. 13 shows the
results. The measured distortion metics are listed in the bottom

part of Table II. For these relatively low SNR values, PGA
has difficulty correcting the i.i.d. uniform phase errors [43].
In Case 1, PGA is not able to estimate the higher-order
components of the phase error, resulting in a blurred image.
For the other two cases, it fails more drastically. The MBIR
algorithm was able to produce focused images in all three
cases. MBIR’s NRMSE was 58-76% lower than that of FBR
with PGA. In addition, when comparing Figs. 11 and 13, the
results show that MBIR performed almost as well with no
knowledge of the phase errors as it did when the errors were
known.

Figure 12 (b) shows how the NRMSE changes when phase
errors are not known and the reinitialization process is used.
The spikes at iteration 3000 occur when switching from the
final reinitialization loop to the actual reconstruction. They are
a result of switching from the Gaussian prior used to initialize
the phase errors, to a prior which more-closely resembles an
L1 norm during reconstruction. Figure 12 (b) also reveals that
the number of reinitialization loops NL can be reduced without
significantly impacting NRMSE. However, caution must be
exercised since NRMSE does not necessarily correspond to
changes in the cost function nor does it indicate a focused
image.

B. Laboratory Data

In this section, the proposed MBIR technique was tested on
data produced in the ISAL laboratory at JPL [40], [41]. The
bench-top experimental setup was a bi-static system consisting
of a transmitter, heterodyne receiver, and rotating target. A
1310 nm tunable laser produced a LFM chirped pulse using
a PZT actuator to tune the laser’s external cavity [41]. A
self heterodyning system was employed where 10% of the
transmitted signal was used as the local oscillator. Specific
details about the system are provided in Table III. To isolate
the narrow-band signal of interest, the detected signal is
demodulated, low-pass filtered, and down sampled, resulting
in M data points.

Various shaped target stencils were placed on a Spectralon
plate angled at 45 degrees which acted as a Lambertian
reflector in the near infrared (IR). A rotation stage actuated
by a PZT was used to provide relative movement between the
transmitter/receiver and target. The target platform is shown
in Fig. 14. Three different target stencils were used in this
experiment, a simple three-bar target, the Air Force logo, and
the same test pattern used in the simulations. They are shown
in the top row of Fig. 15.

There are four attributes of the experimental setup that
degrade, alter, or limit the performance of the imaging system,
and therefore make image reconstruction more difficult.

1) Although there were no phase errors purposely induced,
the combination of a less-than-perfect waveform and an
open air system (i.e the beam passes through several
meters of free-flowing laboratory air) generate phase
errors and blur the image.

2) At IR wavelengths the paper used for the stencils
and to block the stage is both slightly reflective and
translucent. This results in background clutter (similar
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Fig. 10. Results for Experiment 1 showing the impact of QGGMRF parameters, (p, T, γ), on reconstruction. The top row shows the difference between (a)
a quasi-TV reconstruction, (b) a hybrid reconstruction, and (c) a Gaussian reconstruction. The bottom row shows the effect of varying γ which controls the
amount of regularization. The vertical axes represent range and the horizontal represent cross-range.

Fig. 11. Results for Experiment 2 comparing FBR (a-c), FESAR (d-f), and MBIR (g-i) for SNR levels of 3, 0.9, and 0.33 when phase errors were known a
priori. The vertical axes represent range and the horizontal represent cross-range.

to what a ground-looking SAL system might encounter)
and returns from objects behind the paper barrier.

3) The target plate was aligned by eye and the card-stock
had a slight tilt across it (i.e. it may not be completely
flush to the plate). Therefore the image appears skewed

or rotated. The effect is similar to having an axis of
rotation which is not parallel to the y-axis.

4) Lastly, the resolution was poor relative to the target size
and detail.

While these issues make reconstruction more difficult, they
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Fig. 12. Reconstruction error versus iteration number for (a) Experiment 2
and (b) Experiment 3. The green, bold lines in (b) plot every 10th sample
to highlight the trend. The spikes at iteration k = 3000 result from using
different parameters for the reinitialization process and the reconstruction.

TABLE III
PARAMETERS OF LABORATORY SETUP AND RECONSTRUCTION FOR THE

THREE-BAR TARGET, LOGO, AND TEST PATTERN, RESPECTIVELY
Item Value Units
Wavelength, λ 1.31 µm

Rotation rate, θ̇ 12.5 µrad/s
Chirp Rate, β/π 2 THz/s
Chirp length, τc 34 ms
PRF 10 Hz
Acquisition Time, τs 60 s

Sample Rate, τ−1
d 1 MHz

Data Size, M [792, 412, 502] -
Reconstruction Size, N [792, 412, 502] -
Reconstruction Resolution, (ρx, ρz) (0.88, 2.3) mm
Reconstruction Filter, H I -
Neighborhood, b 3× 3, G(0.8) pixels
Regularization Tuning Parameter, γ 2 -
QGGMRF Parameter, q 2 -
QGGMRF Parameter, T [0.1, 0.5, 0.5] -
QGGMRF Parameter, p 1.1 -
Reinitialization Parameters, (NL, Nk) (300, 10) iter
Stoping criteria, εT 1× 10−4 -

helped highlight the strength of the proposed MBIR technique
compared to FBR in such limiting conditions.

Looking at the FBR reconstructions in Fig. 15, subplots (d)
through (f), we see that the three-bar target is focused and is
recognizable, but still has some minimal background clutter.
The logo appears focused, but has significant background
clutter, making it difficult to identify the target or determine
its support. The test pattern is unrecognizable with significant

background clutter.
The MBIR reconstructions are shown in subplots (g)

through (i). In all three cases, the support of the object is more
clearly established, the object-background contrast is higher,
and the speckle variation is reduced. In addition, the large
three-bar targets in the test pattern are visible and recognizable
in the MBIR reconstruction but not in the FBR image.

VI. CONCLUSION

In this paper we have presented a model-based iterative
reconstruction algorithm designed specifically for SAL. Rather
than estimating the speckled reflection coefficient, we pro-
posed estimating the real-valued reflectance. This represents
a more-direct approach for producing reconstructions which
closely resemble conventional optical images. A Bayesian
framework was used to derive the MAP estimate of the
reflectance. Using a QGGMRF prior model, we were able
to model two-dimensional correlations between neighboring
pixels, which promoted a smooth and more natural looking
reconstruction. The EM algorithm was used to design a
surrogate function which simplified the optimization process.

The utility of the proposed algorithm was verified using
simulated data from AFRL’s SimISAL, as well as experi-
mental data from JPL’s ISAL Laboratory. Results showed
significant and consistent improvements over conventional
reconstructions in terms of image contrast, speckle reduction,
autofocus, and low-noise performance. The challenging labo-
ratory conditions highlight the ability of the proposed MBIR
algorithm to form images which make object characterization
and identification much easier than it is for FBR images.
The ability to distinguish objects from the background, reduce
speckle variations, and resolve basic features, even in strong
noise or clutter, are key to this difference.

APPENDIX A
FURTHER ANALYSIS OF SIGNAL PHASE

In this section, we show that the phase term 4βtϕ̃(t)x/c in
Eq. (17) can be neglected when

ρz � λNx, (56)

where ρz is the resolution of the system along the range (z)
dimension, given by

ρz =
πc

2βτc
, (57)

λ is the illumination wavelength, and Nx is the number of
samples in the cross-range (x) dimension. If we define xmax
as the maximum extent of the object in the x dimension, the
number of cross-range samples is given by

Nx =
2ϕ̃(t)xmax

λ
, (58)

Given xmax and Eqs. (57) and (58), we can specify an upper
limit on the phase term given by

4βtϕ̃(t)x

c
≤ 4βtϕ̃(t)xmax

c
,

=

(
2λβτc
c

)(
2ϕ̃(t)xmax

λ

)
.

= πλ
1

ρz
Nx .

(59)
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Fig. 13. Results for Experiment 3 comparing FBR (a-c) and MBIR (d-f) for SNR levels of 3, 1, and 0.3 when phase errors were not known a priori. The
vertical axes represent range and the horizontal represent cross-range. FESAR was not included since it does not correct phase errors.

Fig. 14. Target platform used for laboratory setup when viewed from the
front (a) and side (b). A stencil made of matt black cardstock paper on top
of a white Spectralon reflecting plate was used as a target. Matt black paper
was also used to block returns from the rotation stage.

To be considered negligible, the upper limit given in Eq. (59)
must be small. Specifically, we will require that

πλ
1

ρz
Nx � π (60)

By rearranging Eq. (60), we get the constraint given by
Eq. (56). For an example scenario where Nx = 200 and
λ = 1× 10−6, we get an easy-to-achieve constraint of

ρz � 2× 10−4 . (61)

APPENDIX B
EVALUATION OF GRAM MATRIX

In order to use Eq. (41), we must show that AHA = MI . In
this section, we first specify the structure of A, then show the
(r, s) element of the Gram matrix is (AHA)r,s = Mδ(r− s).

We start with our definition of the forward model operator,
A, given in Eq. (32) and the following three assumptions about
its structure: 1) We assume the signal is band limited and

Nyquist sampled. This allows us to express the reconstruction-
filter as H = I . 2) We assume that A is a square matrix. For
this to be true, we must reconstruct images which are the
same size as the data (i.e. M = N ). 3) We must assume
some function for the object rotation angle ϕ(p, q) in order to
evaluate the structure of A. We choose a simple linear model
given by

ϕ(p, q) = ϕ̇t = ϕ̇pτc + ϕ̇qτd, (62)

where ϕ̇ is the object-rotation rate in rad/s, and t = pτc+qτd
is the time of the qth sample of the pth pulse.

Given the definition of A in Eq. (32) and assumption 1
above, the Gram matrix can be written as

AHA = DHHHD(φ)HD(φ)HD = DHD, (63)

where φ is the phase-error vector of unit-amplitude exponen-
tials, and therefore D(φ)HD(φ) = I . The matrix D represents
the skewed DSFT of Eq. (28). To show that AHA = MI , it
is sufficient to show that DHD = MI . We do so by deriving
an explicit expression for D given assumptions 2 and 3, then
evaluating the elements of its Gram matrix DHD.

To derive an expression for D, we start with Eq. (28), which
we will write as

G(q, p) =

Nz−1∑
l=0

Nx−1∑
k=0

g(l, k)e
j2π

[
2ϕ(p,q)τcδx

λ k+
βτdδzq

πc l
]
, (64)

where boldface type is used to represent the two-dimensional
forms of vectors G ∈ CM and g ∈ CN , and G = Dg. For Nq
samples per pulse and Np pulses, G ∈ CNq×Np . Additionally,
for a reconstruction with Nz samples along the z dimension
and Nx samples along the x dimension, g ∈ CNz×Nx . Using
assumption 2, we have Nz = Nq and Nx = Np, and the
image-domain sample periods are equal to the FBR resolutions
given by [8]

δx =
λ

2ϕ̇τcNx
, δz =

πc

βτdNz
. (65)
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Fig. 15. Target stencils used in laboratory experiment (a-c), FBR reconstructions with PGA autofocus (d-f), and MBIR reconstructions (g-i). The vertical
axes represent range and the horizontal represent cross-range. FESAR was not included since it does not correct phase errors.

Using Eqs. (62) and (65), and noting that the ratio of the
detector sample period to the pulse length is given by τd/τc =
1/Nz , we can write Eq. (64) as

G(q, p) =

Nz−1∑
l=0

Nx−1∑
k=0

g(l, k)ej
2π
Nx

kpej
2π

NxNz
kqej

2π
Nz

lq . (66)

Equation (66) gives the relationship between the two-
dimensional functions G, and g. We now use Eq. (66)
to determine the relationship between the vectors G
and g, which is represented by the matrix D. For
raster ordering, the element Dm,n relates the vector
element gn = g(bn/Nxc,mod {n,Nx}) to Gm =
G(bm/Nxc,mod {m,Nx}), where b·c indicates the floor op-
erator, and mod {·} indicates the modulo operator. Therefore,
using the kernel from Eq. (66), we can write the (m,n)
element of D as

Dm,n = ej
2π
Nx

mod{n,Nx}mod{m,Nx}ej
2π

NxNz
mod{n,Nx}b mNx c

∗ ej
2π
Nz
b nNx cb

m
Nx
c .

(67)
Given Eq. (67), we can express element r, s of the Gram

matrix as

(DHD)r,s =
M−1∑
i=0

D∗i,rDi,s,

=
M−1∑
i=0

ej
2π
Nx

c1mod{i,Nx}ej
2π
Nz

c2b i
Nx
c,

(68)

where
c1 = mod {s,Nx} −mod {r,Nx} , (69)

and

c2 = b s
Nx
c − b r

Nx
c+

mod {s,Nx} −mod {r,Nx}
Nx

, (70)

are are constant with respect to the index variable i.
Next, we split the sum over i into a two dimensional sum

over iz = bi/Nxc and ix = mod {i,Nx}. This allows us to
represent Eq. (68) as the product of two geometric sums given
by

(DHD)r,s =

Nz−1∑
iz=0

(
ej

2π
Nz

c2
)iz Nx−1∑

ix=0

(
ej

2π
Nx

c1
)ix

. (71)

For the diagonal elements of the gram matrix, r = s, which
results in c1 = c2 = 0, and (DHD)s,s = Nz ∗ Nx = M .
For cases where r 6= s, we can use a geometric sum to write
Eq. (71) as

(DHD)r 6=s =
1−

(
ej

2π
Nz

c2
)Nz

1− ej
2π
Nz

c2
∗

1−
(
ej

2π
Nx

c1
)Nx

1− ej
2π
Nx

c1

=
1−

(
ej2π

)c2
1− ej

2π
Nz

c2
∗

1−
(
ej2π

)c1
1− ej

2π
Nx

c1
,

= 0 .

(72)

Therefore, (DHD)r,s = Mδ(r − s), and AHA = MI .
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