

THE PHASE RETRIEVAL PROBLEM AND ITS APPLICATIONS IN OPTICS

A Thesis

by

RUSSELL EDWARD TRAHAN III

Submitted to the Office of Graduate Studies of

Texas A&M University

In partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, David Hyland

Committee Members, Suman Chakravorty

 Tom Pollock

 Alexey Belyanin

Head of Department, Rodney Bowersox

December 2014

Major Subject: Aerospace Engineering

Copyright 2014 Russell Edward Trahan III

ii

ABSTRACT

 In this dissertation the various forms and applications of the phase retrieval

problem in imaging are discussed. The phase retrieval problem in general refers to the

estimation of the phase of a complex-valued function based on knowledge of its

magnitude. Here the phase retrieval problem is applied to the estimation of the phase of an

electromagnetic wave field based on knowledge of its magnitude. The magnitude (not the

phase) can be measured using several devices as discussed.

 There are many applications of phase retrieval which have been explored where

the mapping between the detected wave field magnitude and the light source is the Fourier

transform. Within these applications phase retrieval solutions are used to estimate the

phase of the Fourier transform so as to obtain the image or the shape of the light emitter.

These solutions necessitate a model of the propagation of the wave field, a method of

detecting the field’s magnitude, and a method of estimating the phase of the observed field.

The first two considerations are discussed here historically and reference many significant

scientific discoveries, namely the Huygens-Fresnel principle, the Van Cittert-Zernike

theorem, and the Michelson interferometer.

 Within the field of interferometry where the Fourier transform is the mapping

between the light source and observed wave field, most solutions utilize a discrete Fourier

transform. The estimate of the light source takes the form of a two-dimensional pixelated

image. These solutions have been explored for many years and have many variations for

particular applications. Not many of these solution methods, however, have confronted the

iii

problem of measurement noise. Measurement noise here refers to noise in the

quantification of the magnitude of the wave field at the observed locations. Within this

dissertation the negative effects of noise are analyzed and a method of filtering the noise

from the data is derived, tested, and shown to be effective. In a separate analysis the use

of the discrete Fourier transform as opposed to the continuous Fourier transform is

questioned. A phase solution is proposed which is capable of estimating the source of the

observed wave field and takes discrete magnitude data and outputs a continuous image

function formed from Gaussian bases. This method is beneficial from an analytical point-

of-view since it is not an iterative solution. It also has an error metric which definitively

determines whether the true solution has been found—unlike the traditional solution

methods.

 The phase retrieval problem is also explored in the case where the Fourier

transform is not the mapping between the image and the observed wave field. Particularly,

the case of a small asteroid occulting a star is analyzed with the goal of characterizing the

shape of the asteroid’s silhouette. A solution is formulated capable of resolving the asteroid

silhouette based on time histories of the intensity of the wave field measured at multiple

spatial locations. The solution is based on an analysis of the shadow that the occulter casts.

 The phase retrieval problem is present in many current fields of imaging and

remains a prominent source of inquiry. Although many solution methods exist, there are

still many improvements that can be made. This dissertation addresses some potential

improvements to existing solutions and proposes new applications and formulations of the

phase retrieval problem.

iv

ACKNOWLEDGEMENTS

 I sincerely thank Dr. David Hyland for his guidance, encouragement, and support

while working on my master’s and doctoral degrees. It has been an honor and a pleasure

to work with him. I would also like to thank my committee, Dr. Belyanin, Dr. Chakravorty,

and Dr. Pollock, for their time and advice over the last several years. I’d also like to

acknowledge the help of Dr. Hyland’s graduate students, namely Greg Kelderman, Daniel

Fitch, and Micaela Landivar, who all have aided me greatly in my time in graduate school.

 I would also like to thank my parents for their encouragement to pursue my

education in these many years of college. Their support and example have been priceless

in the completion of my education.

 Finally, I thank my fiancé Brookelynn Russey who has stood with me and kept me

going despite my late nights and weekends working. Words cannot express how grateful I

am to have had her with me through this time.

v

NOMENCLATURE

 Angular frequency of light

 Data coverage ratio

R Distance from source to observer

z Distance from object to observer

... Ensemble average operator

 U t Electromagnetic field

 E t Electric field

 I t Electric field intensity

S Far field source object’s plane

 ,
x y

   Far field source object/image angular view coordinate

 ,x x y Far field source object/image spatial coordinate

 I t Fluctuation in electric field intensity

 ,u u v Fourier domain coordinates

 F x Fresnel integral

F Fresnel number

 I x Image pixel value

ICI Intensity correlation interferometry

vi

 Light wavelength

 Normalized mutual coherence

 J u Mutual coherence

MTF Modulation transfer function

O Observation plane

 ,   Observation plane coordinates

OTF,  ˆ ...O Optical transfer function

 Phase of a complex value

RMS Root Mean Squared

  Silhouette Function

c Speed of light

SNR Signal-to-noise ratio

vii

TABLE OF CONTENTS

 Page

ABSTRACT ... ii

ACKNOWLEDGEMENTS ... iv

NOMENCLATURE .. v

TABLE OF CONTENTS ... vii

LIST OF FIGURES .. ix

LIST OF TABLES .. xv

1. INTRODUCTION ... 1

1.1. Light as a Wave Field ... 3

1.2. The Van Cittert-Zernike Theorem .. 12

1.3. Optical Interferometry .. 18

1.4. Applications of Phase Retrieval ... 24

2. EXISTING PHASE RETRIEVAL METHODS ... 27

2.1. The Error-Reduction and Hybrid Input-Output Methods 29

2.2. Phase Retrieval Algorithm Comparisons ... 37

3. THE CONSTRAINT RELAXATION ALGORITHM ... 56

3.1. Effects and Filtering of Noise in Phase Retrieval 57

3.2. Comparison with Existing Methods ... 65

4. PHASE RETRIEVAL USING GAUSSIAN BASIS FUNCTIONS 88

4.1. Pixels versus Gaussians .. 89

4.2. Gaussians in Imaging ... 93

4.3. Phase Retrieval Algorithm ... 95

4.4. Example .. 101

4.5. Conclusion .. 106

viii

5. RECOVERY OF ASTEROID SILHOUETTES BY STELLAR OCCULTATION 108

5.1. Data Collection ... 115

5.2. Phase Retrieval Algorithm ... 117

5.3. Example .. 120

5.4. Silhouette Recovery in the Presence of Noise 126

5.5. Data Coverage and Aperture Positioning 131

6. CONCLUSIONS ... 140

REFERENCES .. 144

Appendix I – 2D Projection Matlab Code ... 156

Appendix II – Gaussian Phase Retrieval ... 164

Appendix III – Occultation Phase Retrieval ... 169

ix

LIST OF FIGURES

FIGURE Page

1 Schematic of the Fraunhofer single slit experiment. .. 8

2 Photograph of the interference pattern resulting from a laser beam going

through a single slit [12]. .. 8

3 Schematic of the double-slit experiment. ... 11

4 Photograph of the diffraction pattern resulting from a laser going through

a double slit [17]. .. 11

5 Two observer in an observation plane and a light source in the far-field plane. .. 13

6 Graphical representation of the θ angular spatial plane which contains the

image and the Fourier UV wave number plane. ... 17

7 Schematic of a Michelson stellar interferometer showing the incoming

lights path to the focal point. .. 19

8 Twenty-foot Michelson interferometer for measuring star diameters, attached

to upper end of the skeleton tube of the 100-inch Hooker telescope [20]. 20

9 Navy Prototype Optical Interferometer, Anderson Mesa, Flagstaff [21]. 20

10 Schematic of an intensity correlation interferometer. .. 22

11 Schematic of the stellar intensity correlation interferometer................................ 22

12 Photograph of the Narrabri stellar interferometer used by Hanbury Brown

and Twiss [24]. ... 23

13 Block diagram of the error-reduction method. ... 30

14 Comparison of the error in a test case of the ER and HIO on the 256x256

image of Saturn with noiseless Fourier modulus data. ... 32

15 Comparison of the error in a test case of the ER and HIO on the image of

Saturn with noisy Fourier modulus data, 5%. .. 36

x

16 Result of the HIO in a test case on the image of Saturn with noisy Fourier

modulus data, 25%. .. 36

17 Visualization of the Error Reduction method’s domains and projections [39]. ... 41

18 Visualization of the Solvent Flipping method’s domains and projections [39]. .. 42

19 Visualization of the HIO iteration projections and overall projection progress. .. 44

20 Visualization of the Difference Map method’s domains and projections. 45

21 Visualization of the Averaged Successive Reflections method’s domains and

projections. ... 46

22 Visualization of the Hybrid Projection Reflection method’s domains and

projections. ... 47

23 Visualization of the Random Averaged Alternating Reflections method’s

domains and projections. .. 48

24 Comparison of projective algorithms seeking the intersection of linear,

intersecting domains. Markers are placed every 10 iterations on each path.

(The HIO and HPR methods overlap.) ... 51

25 Relative error, distance from intersection, of the comparisons in Fig. 24. 52

26 Comparison of projective algorithms seeking the intersection of a non-convex

domain and an intersecting linear domain. ... 53

27 Comparison of projective algorithms seeking the intersection of a

non-convex and an intersecting linear domain with a positivity constraint. 54

28 Zoomed view of the intersection in Fig. 27. ... 55

29 Example of the Error Reduction algorithm’s filtering effect through one

iteration of the error-reduction algorithm. .. 61

30 Comparison of the HIO projections with and without constraint relaxation.

Intermediate projections are denoted by the thin and dashed lines. 64

31 The true image of the fictitious satellite and the estimated image after 500

iterations using the HIO. ... 66

32 Modulus constraint violations at each iteration for the HIO in the presence of

noise. ... 66

xi

33 Image constraint violations at each iteration for the HIO in the presence

of noise. .. 67

34 The image of the fictitious satellite after 500 iterations using the HIO (a)

and after an additional 500 iterations using the CR-HIO method (b). 69

35 The modulus constraint violations both before and after the CR is

implemented. .. 69

36 The image constraint violations both before and after the CR is implemented. .. 70

37 The absolute Fourier modulus error both before and after the CR is

implemented. .. 70

38 Example result showing (a) the true image and (b) the reconstructed

image after 500 iterations without constraint relaxation. The relaxation

was performed from iteration 501 to 1000 with the result shown in (c).

The box in (b) and (c) indicates the boundary of the background region. 72

39 The image constraint violations vs. iteration for the Saturn example. 72

40 The Fourier modulus error vs. iteration for the Saturn example. 73

41 Phase retrieval algorithms seeking the intersection of a non-convex domain

and an intersecting linear domain. .. 76

42 Phase retrieval algorithms seeking the intersection of a non-convex domain

and an intersecting linear domain. The two domains only graze each other. 77

43 Phase retrieval algorithms seeking the intersection of a non-convex domain

and a non-intersecting linear domain. The minimum separation is 0.05. 78

44 Phase retrieval algorithms seeking the intersection of a non-convex domain

and a non-intersecting linear domain. The minimum separation is 0.5. 79

45 Phase retrieval algorithms with the relaxed constraint seeking the

intersection of a non-convex domain and an intersecting linear domain. 80

46 Zoomed view of the intersection in Fig. 45. ... 81

47 Phase retrieval algorithms with the relaxed constraint seeking the

intersection of a non-convex domain and a non-intersecting linear

domain. The two domains only graze each other. .. 82

xii

48 Phase retrieval algorithms with the relaxed constraint seeking the intersection

of a non-convex domain and a non-intersecting linear domain. The minimum

separation is 0.5. ... 83

49 Phase retrieval algorithms with the relaxed constraint seeking the

intersection of a non-convex domain and a non-intersecting linear domain.

The relaxation parameter was set to a non-zero value too soon. 84

50 Comparison of various interpolation methods used in imaging. 92

51 Comparison of the jinc function to a Gaussian. ... 94

52 The fictitious satellite image formed with Gaussian radial bases. 94

53 Gaussian phase retrieval flow chart. ... 99

54 Sample image formed from Gaussians used for the phase retrieval algorithm

demonstration. .. 99

55 The analytical Fourier transform of the image in Fig. 54 100

56 Sample image spectrum analysis showing the progressive development of

the four translated images. Each image has different line styles connecting

the four Gaussians in the order that the algorithm identified the Gaussians. 100

57 The Pleiades star cluster used as an example of GRB phase retrieval. This

image serves as both the input to the phase retrieval algorithm. 103

58 The squared Fourier modulus of the Pleiades star cluster image represented

as a 1024x1024 array. ... 103

59 The spectrum analysis of the Fourier transform of the Pleiades image. 104

60 The estimated image of the Pleiades resulting from the Gaussian phase

retrieval algorithm applied to the spectrum shown in Fig. 59. The continuous

image is point sampled for display. .. 104

61 512x512 pixel result from the HIO method with a rectangular support region. 105

62 The topmost star in the (a) GRB and (b) HIO images as shown in Fig. 60

and Fig. 61 respectively. ... 105

63 Schematic of the traditional stellar occultation system which relies on a

shadow with sharp edges. ... 110

xiii

64 Schematic of an object’s shadow showing the shadow zone (darkly shaded)

and interference zone (lightly shaded) and the Fresnel and Fraunhofer

regions. This model assumes a point source to the left of the occulter. 110

65 Comparison of shadow patterns for the asteroid Itokawa at several Fresnel

number values. .. 111

66 Schematic of the asteroid casting a shadow which moves across observers. 116

67 The true silhouette of the asteroid Itokawa pixelated in a 64x64 grid based

on images from [85] and scaled for Itokawa as viewed from 1 astronomical

unit away. ... 123

68 The coarse grid of intensity data for the asteroid Itokawa viewed with a

Fresnel number of 0.87 which serves as the input to the phase retrieval

algorithm. .. 123

69 The error between the intensity distribution of the estimated image and the

measured intensity data. ... 124

70 The estimated silhouette of Itokawa pixelated in a 32x32 grid after 1 iteration.124

71 The estimated silhouette of Itokawa pixelated in a 32x32 grid after 10

iterations. .. 125

72 Monte Carlo results showing the mean error of 25 trials at several noise

levels. .. 128

73 Monte Carlo results showing the final mean error of 25 trials at several

noise levels. .. 128

74 Example result after 10 iterations with a noise standard deviation of 0.2. 129

75 Example result after 3 iterations with a noise standard deviation of 0.2 and

a Gaussian filter applied to the intensity data. .. 129

76 Monte Carlo results showing the final mean error of 25 trials at several

noise levels with a Gaussian image filter applied to the intensity data. 130

77 Data collection pattern for 20 equally spaced apertures each 75m apart. The

red regions between the lines of data denotes the absence of data. There are

128 intensity measurements along each apertures path through the shadow

pattern. The full intensity distribution is identical to Fig. 68. 133

xiv

78 Silhouette estimate for 20 apertures making 128 measurements each, i.e.

ρ=2.5. ... 133

79 Data collection pattern for 10 equally spaced apertures each 150m apart.

The red regions between the lines of data denotes the absence of data. There

are 128 intensity measurements along each apertures path through the

shadow pattern. The full intensity distribution is identical to Fig. 68. 134

80 Silhouette estimate for 10 apertures making 128 measurements each, i.e.

ρ=1.25. ... 134

81 Data collection pattern for 8 equally spaced apertures each 187.5m apart.

The red regions between the lines of data denotes the absence of data. There

are 128 intensity measurements along each apertures path through the

shadow pattern. The full intensity distribution is identical to Fig. 68. 135

82 Silhouette estimate for 8 apertures making 128 measurements each, i.e. ρ=1.

This results demonstrates the need for more measurements than the

theoretical minimum requirement. ... 135

83 The randomly perturbed positions of the measurements with a standard

deviation of 5 meters (a) and the erroneously assumed positions of the

measurements (b). The difference is not easily discerned. 136

84 The estimated silhouette recovered from 20 apertures randomly perturbed

with a standard deviation of 5 meters. .. 137

85 The randomly perturbed positions of the measurements with a standard

deviation of 25 meters (a) and the erroneously assumed positions of the

measurements (b). ... 138

86 The estimated silhouette recovered from 20 apertures randomly perturbed

with a standard deviation of 25 meters. .. 139

xv

LIST OF TABLES

TABLE Page

1 List of projective phase retrieval algorithms. ... 39

2 Projection operators used in phase retrieval methods. ... 39

3 Summary of asteroid size’s relationship to the observation distance required

for certain Fresnel numbers. Red denotes troublesome quantities and

requirements. Green denotes a safe observation criterion. 113

1

1. INTRODUCTION

 The phase retrieval problem in general is the estimation of the phase of a complex-

valued function based primarily on its known magnitude. This problem can be found in

many areas of physics, but most attention has been placed on its various forms within the

recovery of a wave field’s properties using measured diffraction information. This field of

study is commonly referred to as interferometry. Within most of these applications, an

electromagnetic wave field is emitted by some objective, and this field’s amplitude is

measured some distance away. In order for the observer to determine the field at the

objective, the measured amplitude is used to devise an estimate of the field’s phase at the

observer’s location. Based on the knowledge of the field’s propagation, observed

amplitude, and estimated phase, the field’s origin at the objective can be determined. There

are thus three areas to explore within the phase retrieval problem: a wave field’s

propagation based on a physical model, an experimental means of observing a wave field’s

amplitude, and the estimation of the phase of the observed field. In this work the first two

are discussed in a historical context to introduce the latter. Many approaches to the

estimation of the phase have been devised for various applications. The methods that are

associated with the applications discussed here are explained and compared.

 The underlying theme of this work is the various formulations of the phase

retrieval problem applied to imaging. Almost all research in phase retrieval is based on

the early work of Gerchberg and Saxton—explained in detail later. The premise of their

methods is that an illuminated object emits light (electromagnetic radiation) towards an

2

observer. The vector components of the electromagnetic field are described by complex-

valued functions, and measurement devices are typically only sensitive to the electric field.

Since all components of the electric field satisfy the wave equation, scalar diffraction

theory is used to describe the light’s wave field. Scalar diffraction theory represents the

wave field as a complex-valued function in spatial position and time. In this work, the

absolute magnitude of the complex wave field is referred to as the “amplitude.” The

amplitude or amplitude-squared of the light’s wave field is detected by some means at

some known positions relative to the objective. Knowledge of the wave field’s amplitude

is used in conjunction with the knowledge of the propagation of light to reconstruct an

image of the object. The three components of the phase retrieval process are evident. The

detection of the wave field amplitude is performed by some apparatus—an intensity

detector. The phase of the observed field at the detector must be estimated by some means.

Lastly, the wave field amplitude and phase at the observer, combined with knowledge of

the dynamics of the wave field propagation, are used to determine a fine-resolution image

of the objective. Here, these three components are described and used to formulate and

solve three distinct problems in phase retrieval. These three problems are namely recovery

of a pixelated image of an object, recovery of a continuous image of an object, and

recovery of the silhouette of an object which is occulting a light source. Each of these

methods is suited for particular applications. In particular, the first two topics are primarily

associated with interferometry while the last is unique.

 Within this dissertation, section 1 contains discussions on the wave nature of light.

This discussion contains both historical and mathematical models for light propagation

3

which has led to the current understanding of light. Next, Section 1 discusses methods of

detecting a light field and gives the mathematical rationale for an interferometer. The

Michelson interferometer and intensity correlation interferometer designs are discussed in

detail. Several practical applications are also discussed with the most attention placed on

the intensity correlation interferometer. Section 2 presents some of the noteworthy

methods of solving the phase estimation problem. The techniques used here to compare

phase retrieval algorithms are also presented. Section 3 gives an original method of solving

the phase problem that builds on the current state-of-the-field methods for handling noise

in the measurement of the light field’s amplitude. Its derivation is discussed in detail, and

its performance is explored in various scenarios. Section 4 presents a new, unique

formulation of the phase retrieval problem which most accurately captures the physics of

using telescopes to detect the wave field emitted from distant objects. Section 5 presents

progress on characterizing the silhouette of asteroids by observing their shadow when

occulting a distant star. Finally, the Conclusion highlights the contributions of this

research to the physics and engineering communities. The work presented in Section 3 has

been previously published in [1, 2], Section 4 has been published in [3], and Section 5 has

been published in [4]. The material discussed here expands on the discussions in the

previous publications.

1.1. Light as a Wave Field

 The description of light has been the object of inquiry for millennia across many

cultures. In classical Greece Empedocles in the fifth century BC held that light was emitted

by the human eye which contained the four elements: fire, air, earth, and water. The first

4

mathematical approaches were made by Euclid around 300 BC who described light as

traveling in straight lines and described reflection. Ptolemy described refraction in the

second century in his book Optics. In ancient Indian Hindu philosophy schools taught that

light was one of the five fundamental elements. The Vaisheshika School posed light as

fire atoms. Most ancient descriptions of light contributed to setting the precedent of

describing light as a particle [5].

 In more modern times, the particle theory of light was further advanced by René

Descartes. In his 1637 publication, he described refraction as being caused by changes in

the speed of light. He erroneously concluded that light propagation is analogous to sound

propagation which increases in speed in thicker media. In fact, the opposite is true for

light. Pierre Gassendi also published a particle theory of light which was embraced by

Isaac Newton. Newton published his Hypothesis of Light in 1675 in which he speculated

that light is composed of corpuscles [6]. In his 1704 publication Opticks, he was able to

describe refraction but did so incorrectly by attributing the acceleration of corpuscles when

changing media to differences in gravitational pull in materials of differing density.

Concurrently, Robert Hooke was working on his 1665 publication Micrographia in which

he suggested the first wave theory of light by concluding that light vibrates perpendicular

to the direction of propagation [7, 8]. He observed interference phenomena in soap bubbles

and oil on water. He was not able to fully explain these phenomena, but he attributed them

to light being a wave. Christiaan Huygens published a mathematical wave theory for light

in 1690 called the Treatise on Light. He held that light waves are independent of gravity

and slow when entering dense mediums. Huygens correctly postulated that every point

5

illuminated by light can be thought of as a point source of light. Leonhard Euler published

his support for the wave theory of light in 1746 citing diffraction as evidence of light being

a wave field. The wave theory was later validated by Thomas Young around 1800 using

his double-slit diffraction experiment [9]. Augustin-Jean Fresnel developed a

mathematical wave theory of light which built upon Huygen’s work and employed a pure

transverse wave [8]. He was able to explain reflection, refraction, and double refraction.

Huygens and Fresnel’s works are commonly combined and referred to as the Huygens-

Fresnel principle. There were many contributors to the description of light, but the

aforementioned are the key contributors to the models needed here [10].

 The culmination of the various theories of light give the modern Huygens-Fresnel

model which is used in developing the phase retrieval problem. In the following work, the

time dependence of the wave field is assumed to be nearly periodic at frequency  . This

is the well-known quasi-monochromatic assumption. Further, we adopt the common

practice of embedding the wave propagation formulation in the complex domain. In this

model, the most basic result is that a point source of light creates a spherically-spreading

wave field. Assuming the wave field is created with strength 0
U , wavelength  , and

speed c , the complex value of the wave field at a point P due to the source at point Q

is [11]

   0
2

exp .
U c

U i t i





 
   

  
P P Q

P Q
 (1.1)

where P and Q are the position vectors of the observation and source points,

respectively.

6

Since a true point source of light cannot be realized, this idea needs to be generalized to

describe a region emitting light. Using the principle of superposition, the field due to an

infinitesimal area can be summed over a spatial region to describe a finite source of light

in the form

   0
2

exp
U c

U i t i d





 
   

  
P P Q Q

P Q
 (1.2)

 A simple example for utilizing the wave field idea is the Fraunhofer Single Slit

experiment. In this experiment monochromatic planar waves arrive at a wall, the image

plane, which has a small opening. The light passes through the small slit and propagates

until it reaches a second solid wall, the observation plane. The slit has width w and the

two walls are separated by the distance D . The goal of the example is to compute the

intensity of the wave field across the observation plane. The diagram is shown in Fig. 1.

 A point P on the observation plane receives light from every point within the slit,

but the phase is shifted by  due to the different distances across the slit to P . The light

taking the shortest path from the slit to P is considered a reference and has 0  . The

maximum phase difference which is associated with the longest path from the slit to P is

 max
.

w y

D





 (1.3)

According to the Huygen-Fresnel principle, every illuminated point within the slit acts as

a point source. By adding the wave field emitted by these point sources using equation

(1.2), the spatially dependent part of the wave field at point P is expressed as

7

    
m ax

0

0

0

max

R e exp

sinc

U
E y i d

D

U

D



 








 (1.4)

Hereon, the sinc function is defined as    sinc sin   . Intensity is defined as the

square of the amplitude of the field. The total intensity at a point  yP on the observation

plane as shown in Fig. 1 is thus

  

2

0
sinc .

U w y
I y

D D





 
  
 

 (1.5)

The intensity pattern shown in Fig. 1 at the observation plane corresponds to equation

(1.5). Fig. 2 is a photograph from an experiment using a laser and a single slit to visually

confirm this derivation. This example shows the correlation between the Huygen-Fresnel

principle’s suggested behavior of light going through a single slit and the reality observed

in an experiment.

8

Fig. 1. Schematic of the Fraunhofer single slit experiment.

Fig. 2. Photograph of the interference pattern resulting from a laser beam going through a single slit

[12].

Observation Plane

Wave-fronts

Narrow slit

P

9

 The double-slit experiment is a continuation of the Fraunhofer single-slit

experiment as shown in Fig. 3. After passing through the single-slit, the field passes

through the second wall which has two equally sized slits. The field emanating from these

two slits is them made to interfere and project an interference pattern on the observation

plane. The propagation from the wall with the double-slits to the observation plane is the

region of interest. The double-slit experiment was first performed by Thomas Young and

is one of the first forms of conclusive evidence that light indeed is a wave [9].

 The double-slit experiment can be analyzed in the same manner as the double slit

experiment. The path length from the top slit to a point P is

2

2 2

1
sin

2

L
r r Lr 

 
   

 
 (1.6)

and the path length for the bottom slit is

2

2 2

2
sin

2

L
r r Lr 

 
   

 
 (1.7)

where D is the distance between the walls, L is the distance between the slit centers,

and
1

sin
y

D



 . When D L , the difference between the two path lengths is

approximated as

2 1

sinr r L    (1.8)

The wave field is thus

10

 

   

m ax
0

0

m ax m ax

0

m ax m ax

0

2 2
R e exp exp

2 2

exp exp exp exp

R e

sin
2

cos

U
E y i i d

D

i i
U

D i i

w y

U Ly D

w yD D

D

  
  

 

 
 

 

 



 





    
       

    

    
    

    
  

 

  

 
 

   
  

 



 (1.9)

The resulting intensity is

  

2

2

20

2

sin
4

cos

w y

U Ly D
I y

w yD D

D



 





  
  

   
   

   

 
 

 (1.10)

 This interference pattern is shown in the schematic in Fig. 3. Notice that the

computed pattern matches the interference pattern viewed in an experiment as shown in

Fig. 4. Most notable a high frequency oscillation is mixed with a low frequency sinc

function.

11

Fig. 3. Schematic of the double-slit experiment.

Fig. 4. Photograph of the diffraction pattern resulting from a laser going through a double slit [17].

Observation Plane

Wave-fronts

Narrow slits (x3) Sunlight

P

12

1.2. The Van Cittert-Zernike Theorem

 Section 1.1 gave the history and an example of the wave theory of light. In the

example, the wave field was propagated from the source to the observation plane through

a simple slit. The propagation process as previously derived can be quite cumbersome for

an arbitrarily shaped source. The Van Cittert-Zernike theorem addresses this issue and

creates a mapping between the source geometry and the intensity at the observation plane

which turns out to be the Fourier transform. The traditional phase retrieval problem is

based entirely on this mapping so its derivation will be shown [13, 14]. The theorem

expresses the cross-correlation of the field measured at two points on the observation plane

in terms of the intensity distribution of the radiant object to be imaged. It is assumed that

the object is an incoherent source, i.e. any two source points radiate with phases that are

random and uncorrelated. The exact form of the theorem is complicated, but usual

conditions yield some algebraic simplifications and Taylor series expansions which lead

to the Fourier transform as the mapping between the source and observation. Due to the

simplicity of its final form and especially the fact that it relates quantities that can be

measured even in the high frequency optical regime, the Van Cittert-Zernike theorem is

more commonly used to predict the propagation of light than the Huygen-Fresnel principle

alone.

13

Fig. 5. Two observer in an observation plane and a light source in the far-field plane.

 Consider a point light source on the far-field parameterized by position  , yx x

and time t . The field at some point  ,
j

   on the observation plane is thus

    
1

, , exp 2
j

j

j

ct R
E x t A x t i

R




 
  

 

 (1.11)

where A is the strength of the source field, j
R is the distance from the source position x

to the observation position j
 ,  is the mean wavelength, and c is the speed of light.

The mean wavelength refers to the center of a narrow band of wavelengths. This is denoted

the quasi-monochromatic assumption. Consider that the field is observed at two spatial

positions 1
 and 2

 . The time average of the product of the fields from the same point

source is the first-order correlation [15],

Far-field Source Plane

(S)

Observation Plane

(O)

 R
1

R
2

Observers

14

   
*

1 2

1 2

1 2

1 2

, ,

exp 2 exp 2

, , .

E x t E x t

ct R ct R
i i

R R
A x t A x t

c c R R

 
 

    
   

       
     

   

 (1.12)

The time shifts represent the phase shift of the wave as it travels over some distance. Time

can arbitrarily be shifted to simplify which gives

      

1 2

* 2 1

1 2

1 2

exp 2

, , , , .

R R
i

R R
E x t E x t A x t A x t

c R R




 
 

   
  

 
 (1.13)

This time shift complicated one of the amplitude terms. Under the condition

1 2
c t R R  where t is the measurement time interval, the expression further

simplifies to

        

1 2

*

1 2

1 2

exp 2

, , , , .

R R
i

E x t E x t A x t A x t
R R




 
 
 

 (1.14)

The intensity of the field is defined as the square of the amplitude so    , ,A x t A x t is

the average intensity of the source at x which gives

      

1 2

*

1 2

1 2

exp 2

, , .

R R
i

E x t E x t I x
R R




 
 
 

 (1.15)

Equation (1.15) is the mutual coherence of the field emitted by the source at x between

the observations points 1
 and 2

 . Integrating this equation over the entire intensity

distribution of the source gives the coherence equation

15

    

1 2

1 2

1 2

exp 2

, .

R R
i

J I x dx
R R




 

 
 
 

  (1.16)

A position x in the source plane can be defined in terms of the direction cosines

, ,
x y

x y

R R
  

 
  
   

 
 for R x and R y . Applying this change of variables requires

a change in the variable of integration which gives

1 2

d x
d

R R
 (1.17)

The integral can thus be rewritten as

     1 2

1 2
, exp 2 .

R R
J I i d    



 
  

 
 (1.18)

The
1 2

R R




 term can be simplified with a few steps. Let R be the normal distance from

the source plane to the observation plane. If  ,
i i i

   it follows that

2 2 2 2

1 2 1 1 2 2

2 2 2 2
1 1 .

R R
R R

R R R R

   




      (1.19)

Expanding the square root in a Taylor series gives

       

2 2 2 2

1 2 1 1 2 2

2 2

1 2 1 2 1 2 1 2

1 1
1 1 1 1

2 2

1
.

2

R R R
R

R R

R

   

 

       


        
           

      

       

 (1.20)

With the definition of the wavenumber plane, also referred to as the “u-v plane,”

2 1 2 1, u v

   

 

 
  (1.21)

16

and with the far-field plane expressed as

1 2 1 2, ,
2 2

x y
R R

   
 

 
  (1.22)

it follows that

2 1

x y

R R
u v 




  . (1.23)

The mutual coherence is thus

       , , exp 2
x y x y x y

J u v I i u v d d         (1.24)

which is the form of a standard two-dimensional Fourier transform [16].

 Fig. 6 shows a graphical relationship between the angular picture frame and

angular resolution quantities in the image and Fourier domains. This figure serves as a

visual for the concept that information in the Fourier domain far away from the origin

represents the detail in the image, whereas information near the origin in the Fourier

domain represents the large features in the image. This diagram assumes a finite aperture

with a finite field of view viewing an infinite scene.

17

Fig. 6. Graphical representation of the θ angular spatial plane which contains the image and the

Fourier UV wave number plane.


y

Angular
resolution

= 
R

Picture

Frame = 
P


x

Resolution disk

radius
= 1/

R

V

U
Picture

frame
Region

= 1/
P

18

1.3. Optical Interferometry

 Along with the maturation of the wave theory of light came applications of the

theory to various fields of science, particularly astronomy. In 1868 Fizeau devised a

method of measuring the angular dimensions of a star using two slits in front of a

telescope. In 1890 Michelson successfully implemented Fizeau’s idea to measure the

diameter of the moons around Jupiter which marked the birth of stellar interferometry

which has since taken several forms [8].

 In general, an interferometer splits a wave field into two or more paths and

recombines the paths in a controlled way. For example, the double-slit experiment takes

the light from the first slit, splits it by passing it through the double slit mask, and combines

the light from the double-slits on the observation plane. There are many types of

interferometers that demonstrate various phenomena, many of which serve as technical

demonstrations. Michelson devised the first interferometer with the purpose of making

astronomical observations which marked the beginning of the stellar interferometry field.

 The Michelson stellar interferometer, being one of the earliest, is quite simple [18].

Light from a star is collected by two separated apertures. The lights is brought from the

two apertures to a central combiner. The combiner is essentially a telescope which focuses

the light from the two apertures onto an observation plane where the interference pattern

is visible. A major complication with the Michelson interferometer and other comparable

interferometers is the precision required along the light paths. The two paths must have

lengths accurate to within a small fraction of the wavelength of the light to prevent phase

shifting which essentially blurs the interference pattern. This problem has been handled

19

satisfactorily but still poses significant technical and financial burdens [19]. The schematic

is shown in Fig. 7. A Michelson interferometer was added to the Hooker telescope in 1920

shown in Fig. 8. A modern 437 meter optical Michelson interferometer is shown in Fig. 9

and is one of the largest in the world. It combines six beams from apertures in a Y

configuration. There are dozens of types of optical interferometers that build upon the idea

within the Michelson interferometer. Each has its own benefits, complications, and

applications—enough that an exhaustive list here is unnecessary.

Fig. 7. Schematic of a Michelson stellar interferometer showing the incoming lights path to the focal

point.

Aperture 1 Aperture 2

Combiner

Observation Plane

20

Fig. 8. Twenty-foot Michelson interferometer for measuring star diameters, attached to upper end

of the skeleton tube of the 100-inch Hooker telescope [20].

Fig. 9. Navy Prototype Optical Interferometer, Anderson Mesa, Flagstaff [21].

21

 A field of interferometry that aims to mitigate the necessity of precision optics as

is needed for a Michelson interferometer is intensity correlation interferometry. These

optically simpler interferometers capture incoming light at two apertures which use

photodetectors to quantify the intensity of incident light. The photodetector measurements

are then combined computationally instead of physically. This concept allows for

apertures to be moved arbitrarily without the need for precise measurement of the path

length. This technique was pioneered by Robert Hanbury Brown and Richard Twiss and

was published in 1954 [22].

 The Hanbury Brown and Twiss effect correlates the arrival of photons at two

spatially separated photodetectors as shown in Fig. 10. The correlation between photon

arrival times is proportional to the coherence of the light source [23]. This means that if

laser light is used there is no correlation between the photon arrivals at the two detectors.

If light from a thermal source is used, however, the correlation is non-zero and positive.

The interferometer as shown in Fig. 10 is merely an autocorrelation bench-top apparatus

for demonstrating the Hanbury Brown and Twiss effect.

22

Fig. 10. Schematic of an intensity correlation interferometer.

Fig. 11. Schematic of the stellar intensity correlation interferometer.

Light Source Detector 1

D
etecto

r 2

Half-Silvered

Mirror

Correlator

High-Pass

Filter

Correlate

Time Average

Aperture 1 Aperture 2

High-Pass

Filter

Delay

23

Fig. 12. Photograph of the Narrabri stellar interferometer used by Hanbury Brown and Twiss [24].

24

 For application to stellar interferometry, the intensity interferometer is modified

from its bench-top form as shown in Fig. 10. Two separated light collectors measure the

total intensity of the incoming light using photodetectors [25, 26]. The intensities are the

square of the complex field at the two spatial locations:

      
*

1 1 1
I t E t E t (1.25)

and

      
*

2 2 2
.I t E t E t (1.26)

The intensity interferometer includes equipment to compute the time-averaged cross-

correlation of the fluctuations of the two intensity measurements about their average

values. Brown and Twiss’ significant discovery was that the cross-correlation is

proportional to the magnitude of the mutual coherence of the wave field at the relative

position of the two telescopes. There is also a proportionality constant that relates the

cross-correlation with the mutual coherence which is not discussed here. The mutual

coherence is the magnitude of the quantity  J u in the Van Cittert-Zernike theorem. If

the coherence magnitude is measured at sufficiently many relative positions of the

telescopes (positions in the u-v plane), and if the phase of  J u can be estimated, an

inverse Fourier transform can yield the image of the object. This explains the role of phase

retrieval in intensity interferometry.

1.4. Applications of Phase Retrieval

 The phase retrieval problem has applications in many fields and is not limited to

imaging; however, only imaging applications are considered here. One of the most

25

common applications of phase retrieval is in crystallography. Crystallography refers to a

method of observing the crystalline structure of a material. Crystallography has become

commonplace in the analysis of large biomolecules such as proteins and for inorganic

crystalline materials. Different wave fields can be used for crystallography such as x-rays,

neutrons, and electrons. These are considered because the wavelength of these fields is

less than the length of the atomic bonds in the specimen. The wave field is passed through

the material where it interacts with the atoms leaving a diffraction pattern. The diffraction

pattern is often observed with a film or array of discrete detectors. The phase retrieval

process can then be used to determine the two or three dimensional arrangement of the

atoms in the structure.

 Coherent Diffractive Imaging (CDI) is another method of imaging which employs

the phase retrieval process. This imaging method is typically applied to nano-scale

structures which include nanotubes [27], nano-crystals [28], and material defects [29].

CDI uses either electromagnetic or electron beams to produce a diffraction pattern which

requires phase retrieval to recover the shape of the structure.

 A Transmission Electron Microscope (TEM) is typically capable of producing an

image on a detector; however, when observing a crystal structure the signal-to-noise ratio

can be increased by focusing the TEM to produce a diffraction pattern [30]. It then

functions in a similar fashion as the CDI method.

 Astronomical interferometry also presents an application for phase retrieval and

can be posed as a macro-scale analog to the crystallography method. A distant source of

coherent light produces a diffraction pattern via the propagation of light over long

26

distances as described by the Van Cittert-Zernike theorem. Intensity interferometers thus

require a solution to the phase problem to recover the shape of the light source. Application

of this idea is difficult because where the diffraction pattern in crystallography is very

small, the usable diffraction pattern for astronomical imaging can be many kilometers in

size. The practicality of building a data collection device is thus a topic of ongoing

research.

 Phase retrieval has also been implemented in the analysis of aberrations in optical

devices. As an example, the aberrations in the Hubble space telescope were diagnosed and

characterized through a phase retrieval process [31, 32]. This analysis was used to

determine the optical transfer function of the Hubble telescope prior to its servicing. By

finding the true optical transfer function, which differs from the designers’ intended

optical transfer function, some adaptive methods were devised to mitigate the blurriness

induced by the lens’ aberrations.

 Within the work described here in Section 5 and in [4], the phase retrieval problem

has been applied to stellar occultation. Within this problem, light from a distant star passes

around an occulting asteroid. After passing the asteroid the resulting wave field is subject

to diffraction. The resulting wave field can be observed by multiple observers as a

diffraction pattern. Using this diffraction pattern to determine the geometry of the

occulting asteroid yields a phase retrieval problem. There are many other forms of the

phase retrieval problems but the ones discussed here serve as a brief, representative list.

27

2. EXISTING PHASE RETRIEVAL METHODS

 Through research in the various applications of intensity interferometry, several

methods of phase retrieval have been devised. Most require some form of a priori

knowledge. If not to actually perform the computation, some knowledge of the image is

required to know what algorithms are applicable. Researchers continue to seek a globally

applicable algorithm which requires no a priori knowledge. This sections presents many

of the current algorithms for phase retrieval and gives brief explanations of some of them.

Some of these algorithms will be referred to in later sections.

 To fully understand the difficulties in the phase retrieval problem an exact solution

is considered in the following [33]. In this example consider a pixelated N N image

where the Fourier domain magnitude  ,A u v is known. Since every pixel in the image

is a square, the Fourier domain is the convolution of the Fourier transform of each pixel’s

independent Fourier transform. The Fourier transform of a single pixel at the origin with

intensity I is

      , sinc sinc .J u v I u v (2.1)

The measured quantity  ,A u v is thus a sum of all of the pixel’s Fourier transforms

taking into account the translation of each pixel relative to the origin of the image. The

sum is thus

28

    

        
1 1

, exp ,

 , exp , sinc sinc .

N N

k m

A u v i u v

A k m i k m u k v m




 



  
 (2.2)

Evaluating the square of this expression gives a system of non-linear algebraic equations

          

        

2

2

1 1

2

1 1

, , sinc sinc cos ,

, sinc sinc sin , .

N N

k m

N N

k m

A u v A k m u k v m k m

A k m u k v m k m





 

 

 
   
 

 
   
 

 

 

 (2.3)

This system has 2
N unknowns and 2

N solutions. Any one pixel can be constrained

such that its phase is a specified value. As an example consider  1,1 0  . The system of

equations simplifies to

 

        

     

        

2

1 1

1, 1

2

2

1 1

1, 1

,

, sinc sinc cos ,

1,1 sinc 1 sinc 1

, sinc sinc sin , .

N N

k m

k m

N N

k m

k m

A u v

A k m u k v m k m

A u v

A k m u k v m k m





 

 

 

 





  



  


 

   
 
  

 

 

 (2.4)

This system of equations does have a unique solution but is still difficult to solve

numerically.

 The primary purpose of this discussion is to call attention to the non-uniqueness of

a solution. Solving equation (2.3) is tantamount to factoring a polynomial in two variables.

This means the Fundamental Theorem of Algebra does not hold, and thus non-unique

solutions can exist. Fortunately the probability of encountering Fourier magnitude data in

29

field observations that permits these ambiguities is low. The most common ambiguities

correspond to rotations, translations, and super-positions of solutions. Due to the high

dimensionality, non-linearity, and non-uniqueness of a solution, the direct computation of

the phase from a relationship such as equation (2.3) is infeasible.

2.1. The Error-Reduction and Hybrid Input-Output Methods

 An iterative algorithm was developed by Gerchberg and Saxton which was later

improved by Fienup called the error-reduction (ER) method [34, 35]. This algorithm,

shown graphically in Fig. 13, exploits the discrete nature of an image and the ease with

which a discrete 2-d image can be Fourier transformed. In this work the 2-d discrete

Fourier transform has the form

    
1 1

0 0

1
, , exp 2

M N

x y

ux vy
G u v g x y i

M N M N


 

 

  
    

  
  (2.5)

and the inverse is

    
1 1

0 0

, , exp 2

M N

u v

ux vy
g x y G u v i

M N


 

 

  
   

  
  . (2.6)

An initial guess of the image 0
g is formulated. The image k

g at iteration k is Fourier

transformed to arrive at its representation in the Fourier domain k
G . The Fourier domain

pixel-wise magnitude is constrained to the given, measured value F giving

   ' exp arg .
k k

G F i G (2.7)

The result contains the phase value from the image and the measured modulus values. This

result is inverse Fourier transformed back to the image domain yielding
i

g  . Some region

30

of the image  is known a priori to be background, i.e. zero pixel values, and the image

pixels are real and positive. This knowledge is applied via the constraint

  
   

1

' , , ,
,

0, otherwise

k

k

g x y x y
g x y




 
 


 (2.8)

which gives the image for the next iteration.

Fig. 13. Block diagram of the error-reduction method.

 Fienup defined an error metric which quantifies the violations of the background

nullity in the form [35]

2

2

2
.

k

k

g d

e

g d



 
 



 
 





x

x

 (2.9)

(4) Satisfy

Image

Constraints

(2) Satisfy

Fourier

Constraints

 (1) Fourier Transform

(3) Inverse

Fourier Transform

(Start) Initial Guess of

Image

(End) Final Estimate

of Image

31

It can be shown that this error quantity cannot increase at each iteration which gives the

method its name [34, 36].

 Using Parseval’s theorem the Fourier domain error at iteration 1k  can be stated

as

22 2

, 1 1 1

2

1 1
.

F k k k

k k

E N G G d

g g d



  

 

 

 





x

x

 (2.10)

Similarly, the image domain error at iteration k can be stated as

22

0 , 1

22

1
.

k k k

k k

E g g d

N G G d







 

 





x

x

 (2.11)

Because the image is constrained in the transition from k
g  to 1k

g
 , it holds that

 1 1 1k k k k
G G G G

  
    (2.12)

which implies

2 2

, 1 0 ,
.

F k k
E E


 (2.13)

Using the equalities resulting from Parseval’s theorem in equations (2.10) and (2.11), this

expression can be expanded to

2 2 2 2

0 , 1 , 1 0 , ,
.

k F k k F k
E E E E

 
   (2.14)

This expression shows the apparent convergence of the algorithm because the error cannot

increase. The equalities, however, are the caveat. Experience shows that although the

algorithm is typically convergent, convergence can take an impractical number of

iterations. The algorithm is said to stagnate at local minima of this error metric which the

equalities allow.

32

 To overcome the stagnation problems encountered by the ER method, Fienup

devised some modifications to the method which culminated in the Hybrid Input-Output

method (HIO). This method employs a feedback parameter  to push the pixel values in

 to zero without rigidly constraining them. The image constraint has the form

  
   

     
1

' , , ,
,

, ' , , , .

k

k

k k

g x y x y
g x y

g x y g x y x y



 



 

 

 (2.15)

In a diagnostic cases, the HIO typically outperforms the ER method. Given a proper

estimate of  the HIO error will typically decrease more quickly than the ER error. A

comparison between the ER and HIO is shown in Fig. 14 for a noiseless test case which

shows that the HIO converges more quickly. Since the Fourier modulus data is noiseless,

both converge to about the same error magnitude.

Fig. 14. Comparison of the error in a test case of the ER and HIO on the 256x256 image of Saturn

with noiseless Fourier modulus data.

a) Sample image of Saturn

50 100 150 200 250

50

100

150

200

250

0 100 200 300 400 500
10

-1

10
0

10
1

10
2

10
3

Iteration

b) Error results for the ER and HIO

Im
a
g
e
 C

o
n
s
tr

a
in

t
V

io
la

ti
o
n

ER

HIO

33

 The HIO requires knowledge of the support of the true image, the region which

has zero pixel values,  . The exact background region in practice is not known and must

thus be estimated. There are several methods which can assist in this estimation.

 Fienup, soon after developing the HIO, devised a method of estimating the support

of the image from the support of its autocorrelation [37] but not uniquely [38]. He

concedes if the support is estimated nearly exactly, the HIO will likely stagnate more often

than if a conservative estimate is made in which the foreground is assumed larger than is

actually is. He explains that if the partially converged image happens to be translated such

that part of the foreground lies in  it will be clipped which will cause stagnation. He

suggests that leaving the foreground larger than needed typically provides the best

convergence rates. He later stated that the autocorrelation is more useful for defining an

initial guess of the image rather than the support region. In [38] he says to take the

autocorrelation, decrease its size by a factor of two, threshold the values, and multiply by

a uniform random number. This would define an initial image for the HIO and the

threshold would give a conservative estimate of the  region.

 Another method of determining the support region was proposed by [39] which

adapts to the image at each iteration. The algorithm blurs the image and determines 

based on a threshold of the blurred image. The threshold is slowly decreased with

subsequent iterations until the image is adequately reconstructed. An advantage to this

type of estimation lies in the existence of multiple foregrounds. This can be advantageous

in many fields such as crystallography, x-ray imaging, and astronomy.

34

 It has been shown that the HIO method’s performance can be theoretically

quantified based on the size of the background region. This can be called the amount of

‘over sampling.’ With the definition of the ratio

total pixel number

unknow n-valued pixel num ber
  , (2.16)

the HIO can be shown to be convergent in theory for 2  in each dimension of the 2-

d image or 2  for the entire image [40]. This requirement imposes constraints on the

non-linear system in equation (2.3), i.e. some pixel values in the system are known to be

zero. It is also shown in [40] that oversampling aides in handling noise in the Fourier

modulus data as will be investigated later.

 In practice the Fourier modulus data contains some amount of noise. A model of

this noise,

           1 2
, , , 1 0, 0,

True
F u v F u v F u v N N i       , (2.17)

corrupts the true Fourier modulus with Gaussian noise of standard deviation  and scaled

by the true modulus [1]. It should be noted that the two Gaussians,  1
N  and  2

N  are

statistically independent. This noise model is based on that used in intensity correlation

interferometry when analyzing the statistics of the coherence magnitude measurements

based on the Hanbury Brown and Twiss work [41, 42]. The model is similar to those used

in [35, 38, 43, 44, 45]. With the addition of Fourier modulus noise with 0.05  , the HIO

achieves about an order-of-magnitude smaller error than the ER achieves as shown in Fig.

15. With larger amounts of noise, however, the HIO error oscillates and does not converge

35

[1]. This oscillation behavior will be further explained in the next section. This shows the

necessity for a means of filtering the noise to achieve convergence.

36

Fig. 15. Comparison of the error in a test case of the ER and HIO on the image of Saturn with noisy

Fourier modulus data, 5%.

Fig. 16. Result of the HIO in a test case on the image of Saturn with noisy Fourier modulus data,

25%.

0 50 100 150 200 250 300 350 400 450 500
10

-2

10
-1

10
0

10
1

10
2

10
3

Iteration

Im
a
g
e
 C

o
n
s
tr

a
in

t
V

io
la

ti
o
n

ER

HIO

0 50 100 150 200 250 300 350 400 450 500
10

-1

10
0

10
1

10
2

10
3

Iteration

Im
a
g
e
 C

o
n
s
tr

a
in

t
V

io
la

ti
o
n

37

2.2. Phase Retrieval Algorithm Comparisons

 While the HIO developed by Fienup is the field standard for comparison, many

other algorithms have been proposed which build upon the HIO. A somewhat

comprehensive list and comparison was performed by Marchesini [46]. His article follows

the projection notation as used by some authors. This notation compactly represents an

iteration of the algorithm using operators which can be nested. To introduce the notation

the Error-Reduction method will first be shown followed by the rest of Marchesini’s list

plus some others.

 As previously explained, the error-reduction method takes an image, Fourier

transforms it, constrains the Fourier domain modulus, inverse Fourier transforms the

image, and constrains some portion of the image to arrive at the next iteration’s image.

Each step of this process can be expressed as a projection operation. The image is denoted

by  ,g x y and its Fourier domain is denoted by  ,G u v . The Fourier domain modulus

constraint can thus be expressed as

          , , , exp arg ,
k m k k

G u v P G u v F u v i G u v   (2.18)

where  ,F u v is the known magnitude. This operator can be combined with the Fourier

transform mapping FT such that the operation m
P takes an image, Fourier transforms it,

constrains the magnitude, and inverse Fourier transforms it. This gives

1

.
m m

P FT P FT


 (2.19)

Similarly the image domain constraint can be formulated as

38

    
     

1

, if , ,
, ,

0 otherwise.

k

k s k

g x y x y x y
g x y P g x y




 
  



 (2.20)

Combining these two operators gives a complete iteration of the error-reduction method

as

    1
, , .

k s m k
g x y P P g x y


 (2.21)

Most of the phase retrieval methods can be expressed in this notation although some can

be difficult to understand in the projection notation as opposed to the pixel-wise notation.

39

Table 1. List of projective phase retrieval algorithms.

Algorithm Iteration

Error Reduction (ER) 1k s m k
g P P g




Solvent Flipping (SF) 1k s m k
g R P g




Hybrid Input-Output (HIO)
 

   
1

,

,

m k

k

m k

P g x y
g

I P g x y



 


 
 

 

Different Map (DM)     1
1 1

k s s m s m m s m k
g I P P I P P I g     


             

Averaged Successive Reflection (ASR)  1

1

2
k s m k

g R R I g

 

Hybrid Projection Reflection (HPR)     1

1
1 1

2
k s m m m k

g R R P I P g 


      
 

Random Averaged Alternating Reflector

(RAAR)
   1

1
1

2
k s m m k

g R R I P g 


 
   
 
 

Levi-Stark method    1
1

k k s m k
G G FT P P g 


  

Table 2. Projection operators used in phase retrieval methods.

Projection Formula

Image support constraint  

 

1 ,

0 ,
s

x y
P

x y





 
 



Fourier modulus constraint
     1

, exp arg ,
m k

P FT F u v i G u v FT
  
 

Image support constraint reflector 2
s s

R I P 

Fourier modulus constraint reflector 2
m m

R I P 

40

 Shown in Table 1 is a list of phase retrieval algorithms stated in terms of the

projections listed in

Table 2. This first method not discussed yet is the Solvent Flipping [47] algorithm which

has the iteration

 1
.

k s m k
g R P g


 (2.22)

Expanding the operators as

    
1

 1, if , ,

1, otherwise
k k

x y x y
g g




  
  

 

 (2.23)

helps to see the correlation with the error reduction method. The comparison is most

evident when the projections are viewed in a graphical representation of the domains and

projections as shown in Fig. 17 and Fig. 18. These examples show a two degree-of-

freedom case where the two dimensions (x and y) are analogous to two pixels in an

image. The Fourier transform operators in the m
P projection has no visible effect in these

visualizations. The figure shows the domain S which satisfies the image support

constraint and the domain M which satisfies the Fourier modulus constraint. This

formulation of the phase retrieval problem can employ ideas from fields unrelated to phase

retrieval, such as the von Neumann algorithm in set theory [48], because the problem is

reduced to finding the intersection of two sets [49].

 Each of the phase retrieval methods can be graphically represented in the 2D

fashion shown in Fig. 17. All of the subsequent visualizations for the phase retrieval

methods discussed here are presented with the same scaling. Since the Cartesian

41

coordinates are meaningless, however, numerical ticks marks are not shown on the plots

and units are not shown.

Fig. 17. Visualization of the Error Reduction method’s domains and projections [39].

M

S

g
5
g

4
g

3
g

2
g

1
g

0

42

Fig. 18. Visualization of the Solvent Flipping method’s domains and projections [39].

 The error reduction method starts with an initial guess that satisfies neither

constraint, projects onto the modulus domain, and projects back onto the support

constraint domain. The resulting image, 1
g , is closer to the intersection of the two

domains than the initial guess. Each successive projection yields a result closer to the

intersection than the previous result.

 The solvent flipping method follows similar projections except the projection from

the modulus domain overshoots the support domain and lands on a reflection of the

modulus domain. The benefit is a larger step is taken toward the intersection of the two

domains. The convergence is thus faster for the SF than the ER.

M

S

g
5 g

4 g
3

g
2

g
1

g
0

43

 At first glance in the pixel-wise formula, the HIO appears to have a very similar

form to the ER. In the projection form, however, they are very different. Firstly, an exact

projection onto the support domain is never made. Rather, a step is taken of the form

 

   
1

,

, .

m k

k

m k

P g x y
g

I P g x y



 



 

 

 (2.24)

Secondly, after the projection onto the Fourier domain a split occurs. A portion of the

image is projected onto the support domain and a portion is projected onto a space S

orthogonal to the support domain as shown in Fig. 19a. The two projections—one onto

the support domain and one onto the domain orthogonal to the support domain—determine

components of the final image. In the figure, these are represented as the horizontal and

vertical components. The overall progress shown in Fig. 19b shows that a spiral is formed

around the intersection of S and M . The spiral somewhat explains the behavior seen

previously in which the HIO oscillated between satisfying the modulus and the image

constraints in the presence of noise. The spiral turns into a circle around the intersection

for some noise levels. For higher noise levels the algorithm does not converge. The effect

of noise will be discussed further later.

44

Fig. 19. Visualization of the HIO iteration projections and overall projection progress.

a) HIO Iteration projections

M

S

S_

g
1

g
0

b) HIO method

M

S

g
5 g

4
g

3

g
2

g
1

g
0

45

 The Difference Map (DM) algorithm is the culmination of several simpler

algorithms which are applied to the phase retrieval problem which has the form

     1
1 1 .

k s s m s m m s m k
g I P P I P P I g     


            

 (2.25)

The parameters s
 and m

 are
1

s
 


  and

1

m
 


 to achieve the optimal step [50].

A visualization of this method is shown in Fig. 20. It has very slow convergence and

spirals many times.

Fig. 20. Visualization of the Difference Map method’s domains and projections.

M

S

46

 The Averaged Successive Reflections (ASR) method performs the ER projections

but reflects them and averages the resulting image with the original image in the iteration.

Explicitly the method has the form

  1

1
.

2
k s m k

g R R I g

  (2.26)

The visualization of the projections are shown in Fig. 21. The solid lines show the

projections s m
R R . The dotted line shows the region between the original image of the

iterations and the projected image which are averaged yielding the new iteration on the

center of the dotted line. As the iterations continue the image will make a spiral towards

the intersections of M and S in a similar fashion as the HIO.

Fig. 21. Visualization of the Averaged Successive Reflections method’s domains and projections.

M

S

g
5

g
4

g
3

g
2

g
1

g
0

47

 The Hybrid Projection Reflection (HPR) algorithm,

     1

1
1 1

2
k s m m m k

g R R P I P g 


      
  , (2.27)

is based on the ASR but includes a relaxation with the parameter  . The relaxation helps

to increase the convergence rate by forcing the spiral inwards faster. A typical value for

 is about 0.9. This algorithm is a special single parameter relaxation of the DM

algorithm [51]. Fig. 22 shows the HPR projections with an exaggerated  of 0.3 to

clearly show the comparison of the convergence with the ASR.

Fig. 22. Visualization of the Hybrid Projection Reflection method’s domains and projections.

M

S

g
5

g
4

g
3

g
2

g
1

g
0

48

 The Relaxed Averaged Alternating Reflectors (RAAR) algorithm,

    1

1
1

2
k s m m k

g R R I P g 


 
   
 
 

, (2.28)

is based on the HPR [51]. The authors show some analytical justification for the RAAR

which is not available for the HIO, HPR, or DM. Although the RAAR is based on the

HIO, HPR, and DM, its projection takes a quite different path as shown in Fig. 23. The

RAAR has much faster convergence properties than its predecessors. While the HIO is

considered the basis for comparison in current literature, the RAAR appears to provide the

most favorable and flexible performance of the phase retrieval methods listed here.

Fig. 23. Visualization of the Random Averaged Alternating Reflections method’s domains and

projections.

M

S

g
5 g

4
g

3

g
2

g
1

g
0

49

 In a similar fashion as the example in [46], these algorithms can be compared side-

by-side by giving all the same initial condition and comparable parameters. In Fig. 24 all

of the methods have 0.9  . Shown are the two linear domains S and M which

intersect. The ER and SF exhibit the expected straight line behavior whereas the others

spiral to the intersection. Fig. 25 shows the distance of each method from the origin at

each iteration. The SF and ER typically show the fastest convergence; however,

performance of each algorithm changes based on the parameters and initial conditions. A

general trend thus cannot really be determined.

 The previous comparison gives insight into the performance of the algorithms,

however, the example shows an ideal case. In the phase retrieval problem the modulus

domain is a non-convex set, so to easily visualize the constraint consider two semi-circles

as shown in Fig. 26 [46]. The methods start near a local minimum. The ER, SF, RAAR,

and Levi-Start methods stagnate at the local minimum, whereas the other methods are able

to find the global minimum—the intersection. The DM shows an oscillation when

transitioning from escaping the local minimum to approaching the global minimum which

sometimes reveals an instability. It often stagnates in the oscillation far away from the

intersection. Once the methods get close to the intersection, the spiral behavior appears as

occurred in the linear domain case.

 The previous examples neglected the positivity constraint which exists in the phase

retrieval problem. If the support set imposes a constraint both in the vertical and horizontal

axes, the algorithm’s behavior changes slightly as shown in Fig. 27a. This is analogous to

how the s
P operator imposes both finite support and positivity. The methods converge

50

slightly faster with the positivity constraint than without as shown in in Fig. 27b. Fig. 28

shows how near the intersection the trajectories follow spiral patterns similar to those

shown in Fig. 24.

51

Fig. 24. Comparison of projective algorithms seeking the intersection of linear, intersecting domains.

Markers are placed every 10 iterations on each path. (The HIO and HPR methods overlap.)

-2
-1

0
1

2
3

-2

-1

0

1

2

0

20

40

60

80

S
g

0

M

It
e
ra

ti
o
n

-2 -1 0 1 2 3
-2

-1

0

1

2

M

S

g
0

ER

SF

HIO

DM

ASR

HPR

RAAR

52

Fig. 25. Relative error, distance from intersection, of the comparisons in Fig. 24.

-2 -1 0 1 2 3
-2

-1

0

1

2

M

S

g
0

a) Algorithm Trajectories

ER

SF

HIO

DM

ASR

HPR

RAAR

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

Iteration

b) Distance from the global minimum.

E
rr

o
r

53

Fig. 26. Comparison of projective algorithms seeking the intersection of a non-convex domain and

an intersecting linear domain.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration

b) Distance from the global minimum.

E
rr

o
r

-1 0 1 2 3 4

-1

0

1

2

3

4

5

S

M

a) Algorithm Trajectories

ER

SF

HIO

DM

ASR

HPR

RAAR

54

Fig. 27. Comparison of projective algorithms seeking the intersection of a non-convex and an

intersecting linear domain with a positivity constraint.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration

b) Distance from the global minimum.

E
rr

o
r

-1 0 1 2 3 4

-1

0

1

2

3

4

5

S

M

a) Algorithm Trajectories

ER

SF

HIO

DM

ASR

HPR

RAAR

55

Fig. 28. Zoomed view of the intersection in Fig. 27.

1 1.5 2
-0.5

0

0.5

S

M

ER

SF

HIO

DM

ASR

HPR

RAAR

LS

56

3. THE CONSTRAINT RELAXATION ALGORITHM

 Many phase retrieval methods have been developed with the intent of escaping

local minima and finding the intersection of the Fourier modulus and image support

domains. Not much attention, however, has been placed on filtering noise from the Fourier

modulus data. As discussed previously, referring to equation (2.17), the noise in the

Fourier modulus can be modeled as

           1 2
, , , 1 0, 0, .

True
F u v F u v F u v N N i       (3.1)

The difference between  ,F u v and  ,
True

F u v is enough to make the Fourier modulus

and image support domain not intersect, and it was shown in Section 2.1 that phase

retrieval algorithms are sensitive to this discrepancy. A rare few phase retrieval algorithms

consider the noise issue directly.

 The method developed by Levi & Stark allows the modulus constraint to drift with

each subsequent iteration [52]. Instead of constraining the Fourier modulus to the given

 ,F u v they use the form

        1 1
, 1 , , .

k k k
G u v G u v G u v 

 
   (3.2)

This method however has been observed to either diverge or become trapped at local

minima. Kohl developed a method where the measured Fourier modulus,  ,F u v is

mixed with the current iteration’s Fourier modulus in the form

            , 1 , , exp arg ,
k A k A k

G u v G u v F u v i G u v     (3.3)

57

where
A

 is randomly varied at every iteration [53]. This method has the effect of filtering

some amount of noise; however, it was not developed with this intent. Because of the

random quantity, it is difficult to analyze or give a clear rationale for its behavior. Liu

developed a method where the noise is filtered by accurately knowing the statistics of the

noise [43, 54]. While this method gives a unique rationale based on filtering the noise, its

effectiveness is questionable because of the need to estimate the noise in the modulus

quantitatively. Its performance has also not been observed to be more favorable than the

original HIO method.

3.1. Effects and Filtering of Noise in Phase Retrieval

 To gain insight into the effect noise has on iterative phase retrieval consider the

noisy Fourier modulus

        
 ,

, , , , .
True

a b

G u v F u v a b u a v b     (3.4)

This noise model places a perturbation of magnitude  at the location  ,a b . Note that

      , , , .
True

u v F u v F u v   (3.5)

This noise model and the following analysis are general in the sense that the statistics of

 do not need to be specified.

 Due to the linearity of the Fourier transform, during transformation the  ,a b

terms are independent of each other and independent of the image data True
F . The effect of

each  ,a b term can thus be analyzed separately so let  ,a b   . In the general

iterative phase retrieval algorithm shown in Fig. 13,

58

    , , .G u v u a v b     (3.6)

If the image has extent  0, 1x M  and  0, 1y N  , the inverse Fourier transform is

  , exp 2 .
ax by

g x y i
M N M N


   

    
  

 (3.7)

Next, in the general algorithm an image constraint is applied. Namely, the pixels are real

valued, positive, and have finite support. If the foreground of the image is a distance A

from the left and right and a distance B from the top and bottom, the image has nonzero

pixels for  , 1x A M A   and  , 1y B N B   . The constrained image is thus

 
 , 1 & 1

,
0 otherw ise

1 1 & 1

0 otherw ise.

g x y A m M A B n N
g x y

A m M A B n N

M N

        
 


      
 



 (3.8)

The discrete Fourier transform of this expression is

 
2 1 2 1

, exp

2 2
sin sin

.

sin sin

M A N B
G u v i u v

M N M N

M A N B
u v

M N

u v

M N



 

 

       
   

  

    
   
   


   
   
   

 (3.9)

This equation may seem unexpected considering it is the Fourier transform of a rectangle

function which normally is a product of sinc functions; however, this is a discrete Fourier

transform which gives the Dirichlet or “periodic sinc” function [55]. This analysis took

the image data from just after constraining the Fourier modulus which contained noise to

59

just before applying the modulus constraint again. The goal here is to determine how to

best apply the modulus constraint such that some of the contribution of  is removed.

 Since equation (3.9) is difficult to analyze, consider its maximum magnitude

  
2 2

0, 0
M A N B

G
M N

 
  . (3.10)

This shows that regardless of the location of the noise in the  ,u v plane its largest

contribution after one iteration is at the origin. The effect of the noise at  ,a b influences

all pixels in the  ,u v plane; however, the overall influence is less than before the

iteration. This is evident from the Frobenius norm of equation (3.9) which is

 
1 1

2
2

0 0

1 1

0 0

2

2

,

2 1 2 1
exp

2 2
sin sin

sin sin

2 2
,

M N

u v

M N

u v

e G u v

M A N B
i u v

M N M N

M A N B
u v

M N

u v

M N

M A N B

M N



 

 

 

 

 

 



       
   

  

    
   

    
   

    
    

 
 

 

 

 (3.11)

whereas the Frobenius norm before the iteration was 2 2
e   . The amount of oversampling

thus determines the amount of filtering.

 To demonstrate this graphically these equations are plotted for a simple test case

consisting of a single non-zero pixel in the  ,u v plane. Fig. 29a shows the initial Fourier

modulus with a single pixel containing noise of magnitude  15 1   . Fig. 29b shows

60

the inverse Fourier transform which is the unconstrained image. The image has a uniform

magnitude of 0.02 and a periodic phase factor. The constrained image in Fig. 29c has

support with 10A  and real, positive pixel values. The Fourier transform of the

constrained image, Fig. 29d, shows the new form of the noise. The greatest magnitude is

0.6 which equals
2 50 2 10

50

M A

M

  
 . The square root of the sum of all of the modulus

values, the Frobenius norm, is 0.7746 which equals
2M A

M


.

61

Fig. 29. Example of the Error Reduction algorithm’s filtering effect through one iteration of the

error-reduction algorithm.

-20 -10 0 10 20
0

0.2

0.4

0.6

0.8

1

u

a) Initial Fourier modulus

G
k 0

0.01

0.02

a
b
s
(

g
' k)

0 10 20 30 40 50
-3.14

0

3.14

x

b) Unconstrained Image

a
rg

(
g
' k)

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

x

c) Constrained Image

g
k+

1

-20 -10 0 10 20
0

0.2

0.4

0.6

0.8

1

u

d) Final Fourier modulus

G
k+

1

62

 Based on this insight, the conclusion can be drawn that the Fourier modulus after

an iteration,  1
,

k
G u v


 is a better estimate of the true Fourier modulus  ,

True
F u v than

the measured noisy modulus data  ,F u v . This implies that the measured modulus data

should be mixed with the current iteration’s modulus to obtain the best estimate of the true

modulus. This leads to the idea of imposing the Fourier modulus constraint in the form

            , , 1 , exp arg ,
k k k

G u v G u v F u v i G u v     (3.12)

which is referred to as the Constraint Relaxation (CR) method [1]. Compared to the Levi-

Stark method, equation (3.2), the modulus is constrained to stay near  ,F u v and is thus

less likely to diverge. Compared to Liu’s method, equation (3.3), the filtering effect is

more stable because the relaxation parameter is not changing at every iteration. The

modulus constraint in (3.12) can be written as a projection

   

       

1
, ,

1 , exp arg ,

m
P g x y FT FT g x y

F u v i FT g x y





    

    
 (3.13)

and combined with any of the phase retrieval methods discussed in section 2 to get the

benefits of escaping local minima and filtering the Fourier modulus of noise. As an

example the trajectory of the HIO seeking the intersection of the linear support and Fourier

domains is shown in Fig. 30. The first figure shows the normal HIO where each iteration

projects to the Fourier domain whereas the second figure shows the HIO with constraint

relaxation where the projection does not go completely to the Fourier domain. This is

apparent in the early iterations by looking at the diagonal projection paths. The result is

63

less spiral tendency which means less oscillation between the constraints. Convergence

also occurs more quickly. This will be explored further in the next section.

64

Fig. 30. Comparison of the HIO projections with and without constraint relaxation. Intermediate

projections are denoted by the thin and dashed lines.

-2 -1 0 1 2 3
-2

-1

0

1

2

M

S
g

0

b) Algorithm trajectory for HIO with constraint relaxation.

-2 -1 0 1 2 3
-2

-1

0

1

2

M

S

g
0

a) Algorithm trajectory for HIO without constraint relaxation.

65

3.2. Comparison with Existing Methods

 The Hybrid Input-Output method is the typical standard for comparison since most

methods of phase retrieval have their origins in the HIO. The HIO-CR method will thus

be compared with the HIO first and finally to the other methods of phase retrieval

developed for noise filtering. In the comparison an image of a fictitious satellite is

considered which has approximately half of the pixels in the background. The foreground,

the area not in  , is assumed to be a slightly larger rectangle than the area consumed by

the true foreground. The Fourier modulus is corrupted by noise with standard deviation

0.4 in the model in equation (2.17). This case has a lot of noise and typically the HIO’s

result is incomprehensible. The true image and the  region used are shown in Fig. 31a.

As is typical for the HIO, with the high level of noise an oscillation occurs between

satisfying the modulus constraint and satisfying the image constraint. The modulus and

image domain errors defined by equations (2.10) and (2.11) are shown in Fig. 32 and Fig.

33 respectively.

66

Fig. 31. The true image of the fictitious satellite and the estimated image after 500 iterations using

the HIO.

Fig. 32. Modulus constraint violations at each iteration for the HIO in the presence of noise.

a) True Image b) Estimate, Iteration 500

0 50 100 150 200 250 300 350 400 450 500
3

3.5

4

4.5

5

5.5

Iteration

M
o
d
u
lu

s
 C

o
n
s
tr

a
in

t
V

io
la

ti
o
n

67

Fig. 33. Image constraint violations at each iteration for the HIO in the presence of noise.

 After the 500 iterations of the standard HIO algorithm, the HIO-CR constraints

were implemented for an additional 500 iterations with 0.9  . The image estimates

before starting the CR and after the 500 iterations are shown in Fig. 34. The result has a

much better resemblance to the true image. Not only is the background darker due to the

image constraint, the foreground is much clearer due to filtering the noise. The reduction

in the modulus constraint violations, Fig. 35, shows that approximately 75% of the noise

was filtered. The image constraint violations, Fig. 36, always go to nearly zero for this

method. This is because the modulus filtering both removes noise and adapts the modulus

to satisfy the image constraint. The most notable effect of the CR method is its effect on

the absolute Fourier modulus error defined by

    
2

2 2
, ,

k true k
E N F u v G u v dudv

   
  (3.14)

0 50 100 150 200 250 300 350 400 450 500
10

12

14

16

18

20

Iteration

Im
a
g
e
 C

o
n
s
tr

a
in

t
V

io
la

ti
o
n

68

as shown in Fig. 37. This metric reveals that the initial modulus data has relative error of

2 and after the relaxation the relative error is slightly under 1. Over 50% of the noise

according to this metric is filtered. A typical behavior for this error metric is a spike when

the CR is initially implemented. The spike only consists of the single iteration after the

relaxation starts. The spike can be eliminated by slowly increasing  from zero to the

desired value. In experience with this method so far, the spike has proven to be benign.

Based on these results, the CR-HIO combination proves to be an improvement over the

HIO alone.

69

Fig. 34. The image of the fictitious satellite after 500 iterations using the HIO (a) and after an

additional 500 iterations using the CR-HIO method (b).

Fig. 35. The modulus constraint violations both before and after the CR is implemented.

a) Estimate, Iteration 500 b) Estimate, Iteration 1000

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

Iteration

M
o
d
u
lu

s
 C

o
n
s
tr

a
in

t
V

io
la

ti
o
n

70

Fig. 36. The image constraint violations both before and after the CR is implemented.

Fig. 37. The absolute Fourier modulus error both before and after the CR is implemented.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Iteration

Im
a
g
e
 C

o
n
s
tr

a
in

t
V

io
la

ti
o
n

0 100 200 300 400 500 600 700 800 900 1000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Iteration

F
o
u
ri
e
r

M
o
d
u
lu

s
 E

rr
o
r

71

 The previous example showed the image of a fictional satellite being reconstructed

from its noisy Fourier modulus. To demonstrate the relaxed constraint method with a more

realistic image, consider the image of Saturn in Fig. 38a. The Fourier modulus is corrupted

according to equation (3.1) in the same manner as the previous example with standard

deviation of 0.4. The HIO was run without the constraint relaxation for 500 iterations, and

the results are shown in Fig. 38b.

 The relaxation was again performed from iterations 500 to 1000 as shown in Fig.

38c. The oscillation and then reduction in the image constraint error is shown in Fig. 39.

The reduction in the modulus error is shown in Fig. 40 where the total reduction is about

63%. The background region is nearly completely devoid of artifacts. The foreground is

improved slightly, as shown by the planet’s rings and silhouette being sharpened. The

improvement of the foreground is not significant; however, the image is suffering from

the convolution of the proper and flipped image. This is evident from the rings not being

shown in front of the planet. Through methods such as those in [56, 57, 58, 59, 60] this

can be corrected. Even with the flipped solution convolution, the Fourier modulus noise

reduction was about 58%. With the addition of methods of obtaining a unique solution—

which is beyond the scope of the discussions here—even more filtering is possible. It is

proposed that algorithms such as those in [56, 57, 58, 59, 60], which better manage the

flipping convolution and support issues, would provide far superior results if  1000
,G u v

were used as an input rather than  ,F u v , because the issue of conflicting image domain

and Fourier domain constraints is nearly eliminated.

72

Fig. 38. Example result showing (a) the true image and (b) the reconstructed image after 500

iterations without constraint relaxation. The relaxation was performed from iteration 501 to 1000

with the result shown in (c). The box in (b) and (c) indicates the boundary of the background region.

Fig. 39. The image constraint violations vs. iteration for the Saturn example.

a) True Image b) Estimate, Iteration 500 c) Estimate, Iteration 1000

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2
x 10

9

Iteration

Im
a
g
e
 C

o
n
s
tr

a
in

t
V

io
la

ti
o
n

73

Fig. 40. The Fourier modulus error vs. iteration for the Saturn example.

0 100 200 300 400 500 600 700 800 900 1000
0.5

1

1.5

2

2.5
x 10

4

Iteration

F
o
u
ri
e
r

M
o
d
u
lu

s
 E

rr
o
r

74

 To analyze the performance of the Constraint Relaxation projection in the

algorithms shown in section 2, consider again the two degree-of-freedom case where the

projections can be visualized. The support domain is defined as

   S= , | x 0, y 0x y   (3.15)

The modulus domain is defined as a non-convex domain consisting of two semicircles.

The addition of noise in the Fourier modulus data can be interpreted as a change in the

modulus domain. Here for simplicity the modulus domain will be translated such that the

two domains do not intersect and a gap exists [1, 43, 54]. In these examples the algorithm

starts at    , 2.5, 0x y  which is near a local minimum.

 Fig. 41 through Fig. 44 show the various phase retrieval methods discussed in

section 2.2. Fig. 41 has a clear intersection between the two domains. The ER, SF, and LS

methods converge to the local minimum. The rest of the methods travel away from the

local minimum in a direct normal to the modulus domain until the normal to the modulus

domain at the intersection is crossed. After crossing the line normal to the intersection

point the trajectories travel towards the intersection. In Fig. 42 the case is shown where

the two domains graze each other but to not cross. In this case the RAAR converges;

however, the HIO, DM, ASR, and HPR methods stagnate at an improper y value when

they achieve the proper x value. Fig. 43 shows the case where the two domains do not

intersect. The gap is 0.05 units at the minimum separation. Only the RAAR does not

diverge or converge to the local minimum. The RAAR converges to a point near the global

minimum separation. The exact stagnation distance from the global minimum is

proportional to the size of the gap. Fig. 44 shows the case where the gap between the

75

domains is large. As shown, the gap is 0.5. In this case all of the methods diverge or

converge to the local minimum.

 As mentioned with the rationale for the relaxed modulus projection in equation

(3.13), the relaxation parameter  should be increased cautiously to prevent forcing the

trajectory to converge to a local minimum. In the examples shown in Fig. 45, Fig. 47, and

Fig. 48 the relaxation parameter is defined according to the iteration number k as

  

0, 25

25
0.9 , 25 50

25

0.9, 50.

k

k
k k

k








  




 (3.16)

Fig. 45 shows the case where the two domains clearly intersect as also shown in Fig. 41.

Comparing the region near the intersection, Fig. 46, reveals that the spiral behavior is

eliminated. This means the oscillation between imposing the support constraint and the

modulus constraint discussed previously has been eliminated. Fig. 47 shows the same case

as shown in Fig. 42 where the two domains graze each other. Without the constraint

relaxation the trajectories for several of the methods stagnate. With the relaxation

implemented all of the methods either converge correctly or converge to the local

minimum. With the same parameters as previously used for the case where the domains

had a large separation, no method diverges as shown in Fig. 48. All of the methods except

the ER, SF, and LS converge to the point on the support domain with the minimum

distance from the modulus domain. If the relaxation parameter is non-zero before the

trajectories move away from the local minimum, all of the trajectories converge to the

local minimum as shown in Fig. 49.

76

Fig. 41. Phase retrieval algorithms seeking the intersection of a non-convex domain and an

intersecting linear domain.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration

b) Distance from the global minimum.

E
rr

o
r

-1 0 1 2 3 4

-1

0

1

2

3

4

5

S

M

a) Algorithm Trajectories

ER

SF

HIO

DM

ASR

HPR

RAAR

LS

77

Fig. 42. Phase retrieval algorithms seeking the intersection of a non-convex domain and an

intersecting linear domain. The two domains only graze each other.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Iteration

b) Distance from the global minimum.

E
rr

o
r

-1 0 1 2 3 4

-1

0

1

2

3

4

5

S

M

a) Algorithm Trajectories

ER

SF

HIO

DM

ASR

HPR

RAAR

LS

78

Fig. 43. Phase retrieval algorithms seeking the intersection of a non-convex domain and a non-

intersecting linear domain. The minimum separation is 0.05.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

Iteration

b) Distance from the global minimum.

E
rr

o
r

-1 0 1 2 3 4

-1

0

1

2

3

4

5

S

M

a) Algorithm Trajectories

ER

SF

HIO

DM

ASR

HPR

RAAR

LS

79

Fig. 44. Phase retrieval algorithms seeking the intersection of a non-convex domain and a non-

intersecting linear domain. The minimum separation is 0.5.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

Iteration

b) Distance from the global minimum.

E
rr

o
r

-1 0 1 2 3 4

-1

0

1

2

3

4

5

S

M

a) Algorithm Trajectories

ER

SF

HIO

DM

ASR

HPR

RAAR

LS

80

Fig. 45. Phase retrieval algorithms with the relaxed constraint seeking the intersection of a non-

convex domain and an intersecting linear domain.

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

Iteration

b) Distance from the global minimum.

E
rr

o
r

-1 0 1 2 3 4

-1

0

1

2

3

4

5

S

M

a) Algorithm Trajectories

ER

SF

HIO

DM

ASR

HPR

RAAR

81

Fig. 46. Zoomed view of the intersection in Fig. 45.

1 1.5 2
-0.5

0

0.5

S

M

ER

SF

HIO

DM

ASR

HPR

RAAR

82

Fig. 47. Phase retrieval algorithms with the relaxed constraint seeking the intersection of a non-

convex domain and a non-intersecting linear domain. The two domains only graze each other.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Iteration

b) Distance from the global minimum.

E
rr

o
r

-1 0 1 2 3 4

-1

0

1

2

3

4

5

S

M

a) Algorithm Trajectories

ER

SF

HIO

DM

ASR

HPR

RAAR

LS

83

Fig. 48. Phase retrieval algorithms with the relaxed constraint seeking the intersection of a non-

convex domain and a non-intersecting linear domain. The minimum separation is 0.5.

0 10 20 30 40 50 60 70
0

5

10

15

Iteration

b) Distance from the global minimum.

E
rr

o
r

-1 0 1 2 3 4

-1

0

1

2

3

4

5

S

M

a) Algorithm Trajectories

ER

SF

HIO

DM

ASR

HPR

RAAR

LS

84

Fig. 49. Phase retrieval algorithms with the relaxed constraint seeking the intersection of a non-

convex domain and a non-intersecting linear domain. The relaxation parameter was set to a non-

zero value too soon.

0 10 20 30 40 50 60 70
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

Iteration

b) Distance from the global minimum.

E
rr

o
r

-1 0 1 2 3 4

-1

0

1

2

3

4

5

S

M

a) Algorithm Trajectories

ER

SF

HIO

DM

ASR

HPR

RAAR

LS

85

 The goal here was to devise a modification to the traditional phase retrieval

methods that not only tolerates noisy modulus data but is capable of filtering the noise.

Filtering the noise was set as a goal to eliminate the oscillations in the image and Fourier

domain errors and help prevent stagnation. To develop a theoretical basis for the filtering

scheme, the effect that noise has on an iteration of the Error Reduction method was

derived. This analysis showed that noise could be filtered by carrying the effect of an

iteration on the Fourier modulus over to the subsequent iteration. This result led to the

development of the relaxed constraint projection operator. With the addition of the

relaxation, the Frobenius norm of the error in the modulus data has been reduced by as

much as 92% for noise levels high enough that the HIO alone was barely able to converge.

 For comparison, the satellite example given here was run with various initial

conditions and noise realizations using the method proposed in [54]. The resulting

modulus error was reduced by at most 5% with an average reduction of 1%. The algorithm

in [54] aides in convergence in the presence of noise but has not been shown as effective

at filtering high amounts of noise in two-dimensional images. The algorithm proposed in

[44] manages to filter some of the modulus noise by imposing a condition on the modulus

based on the image’s support. Namely, they rely on the image being largely oversampled.

The algorithm presented here has no such requirement. In fact, the satellite image is under-

sampled; the autocorrelation extends beyond the measured  ,u v domain. Large

oversampling improved the performance here; however, it is not a requirement.

 The phase retrieval methods presented in [46], [52], and [53] were shown to be

similar to the algorithm presented here. These algorithms have complex projection

86

operators and have complex theoretical function minimization derivations and are shown

to aide in eliminating local minimum induced stagnation. They, however, are not

formulated to filter noise. The constraint relaxation by [52] is susceptible to instability

when noise is present. In tests, it was observed to deliver comparable noise reduction to

the method presented here if the algorithm did not go unstable. At high noise levels, it was

rare for the algorithm to not go unstable. For the satellite example used here, the noise

reduction was only 32% using [52] opposed to the 62% consistently observed using the

constraint relaxation method presented here. Even when high levels of noise cancelation

occurred, the filtering was still temporary. The error typically was decreased sharply when

the relaxation was first implemented, and afterwards the error would steadily grow.

 The relaxation method proposed in [53] performed very well with noiseless data

but was never shown to exceed the noise cancelation seen by the constraint relaxation

presented here. Due to the randomization of the relaxation, the noise reduction drastically

varied at every iteration. The noise reduction could possibly be as high as the reduction

for the algorithm presented here, but unless the iterations were stopped when the random

relaxation value was optimal, the noise reduction was small or the noise was made worse.

These results reinforce our claim that the algorithm presented here is intended to filter

noise where others do not have this intended purpose.

 Other papers such as [39], [40], and [61] discuss noise levels with respect to phase

retrieval. The algorithm proposed here differs from these in that not only is the algorithm

able to converge in the presence of a low SNR level—as many do—, but the noise is

actually filtered.

87

 In the examples presented here (among others we have tried), the modulus

constraint relaxation provides superior results when compared to other methods of phase

retrieval with noisy data. With this form of constraint relaxation combined with more

complex methods of determining the image’s support and handling double images, phase

retrieval surpassing the current state-of-the-field is possible.

88

4. PHASE RETRIEVAL USING GAUSSIAN BASIS FUNCTIONS

 All of the phase retrieval methods discussed previously formulated an image as a

rectangular discrete grid of numbers where each number is represented by a square pixel.

Within this formulation, an image with more pixels within the grid will typically reveal

more detail due to the higher resolution. Several limitations of this discrete, pixelated

framework can be identified [3].

 A good image requires a large number of pixels; however, each iteration of the

projective phase retrieval algorithms requires at least two discrete Fourier transforms.

Each transform scales as logN N for a dimension of the image having N pixels. This

scaling can be improved through various optimizations of the FFT method but all have

unfavorable nonlinear growth. Additionally, due to the use of FFTs in the algorithms’

solutions, advancement towards a closed-form solution is virtually impossible. The term

closed-form is used here to refer to a solution which is exact in the sense that an additional

operation or iteration is either not possible or cannot yield more accuracy. Most of the

phase retrieval methods based on the ER method have parameters for the user to adjust

such as feedback parameters, relaxation parameters, support bounds, etc. Convergence of

these algorithms is dependent upon proper use of these parameters which add “art” to the

process. In a truly blind test there is no definitive, quantitative metric to describe an output

as fully converged or not. It is possible for error metrics such as equations (2.10) and

(2.11) to have favorable values even though the output image is completely unlike the true

image.

89

 To overcome these difficulties with of the current methods of phase retrieval, the

problem is reformulated here from the ground up. The underlying problem within all of

the difficulties is the discrete representation of an image. The idea comes to mind: if a

better image has a higher resolution, isn’t a perfect image continuous? Work has been

done in the field of super resolution but the results do not fully address the concerns here

[62]. In the following discussions the phase retrieval problem is reformulated such that an

arbitrary image can have a continuous representation.

 In this section the formulation of a continuous image is given and compared to

existing methods of forming images. Next, characteristics of an image captured using

optical apertures is analyzed and used to rationalize the continuous image formulation.

Finally, based on these insights a phase retrieval method is introduced which makes use

of a continuous framework and has a non-iterative solution. An example is shown and

compared to existing phase retrieval methods.

4.1. Pixels versus Gaussians

 Since a perfect image within the traditional notion of a digital image would have

infinite resolution, the perfect image should be thought of as continuous. The image pixel

values can thus be a continuous function value in 2-d space. In practice the value of this

continuous function is only known at discrete points in this 2-d space. If the function value

is to be evaluated at any arbitrary position, the function value must be interpolated between

the known points. Two of the most common methods in computer graphics for evaluating

an image function value based on discrete known points are nearest-neighbor and bilinear

sampling [63, 64, 65].

90

 Nearest-neighbor sampling estimates the image function value at any arbitrary

 ,x y position as

        ˆ , , , round , round
N N

I x y I i j i x j y   (4.1)

where I is the known function value at the integer coordinate  
2

,i j  . The function

ˆ
NN

I can thus be evaluated for  
2

,x y  based on limited knowledge of I [66]. An

example of this sampling method is shown in Fig. 50. Nearest-neighbor sampling is the

simplest of sampling methods, and its form obviously reveals the notion of visually square

pixels in an image. While this form is apparently uncritically used for all current work in

phase retrieval, it is far from optimal when image quality is a concern. An analytical

Fourier transform of an arbitrary  ˆ ,
N N

I x y is far too cumbersome to use. Additionally,

nearest neighbor sampling is known to the computer graphics community as the worst of

the sampling methods and is typically only used because of its computational simplicity

[66].

 Bilinear sampling performs four linear interpolations between the four nearest

known function values. The estimated image function value is thus

       

     

     

     

ˆ , ,

,

,

,

BL
I x y I i j i x j y

I i j x i j y

I i j i x y j

I i j x i y j

   

   

   

   

  

  

  

  

 (4.2)

91

where  floori x

 and  ceilingi x


 and likewise for j and y [66]. To clarify the

function  floor x , it means to round x down to the nearest integer and  ceiling x rounds

x up to the nearest integer. Bilinear sampling is superior to nearest-neighbor sampling in

terms of the image quality to a viewer as shown in Fig. 50. The grid pattern is less evident

because the function value is continuous across the grid boundaries; however, the slope is

not continuous. Just as the nearest-neighbor method could be Fourier transformed, the

function ˆ
BL

I could be Fourier transformed but the result does not yield a convenient form.

 A much less common image reconstruction technique is the Gaussian radial basis

function (GRB) [67, 68]. This technique forms the continuous image function by

superimposing two-dimensional Gaussians of various amplitudes and positions. The

image function thus has the form

       
2 2

2

1

1ˆ , exp
2

N

j j j

j j

I x y A x x y y


 
     

 
 

 (4.3)

or in vector notation

    
2

2

1

1ˆ exp .
2

N

j j

j j

I A  


 
   

 
 

 (4.4)

This form only requires knowledge of the position  ,
j j j

x y  , amplitude j
A , and size

j
 of each Gaussian in the image. The Gaussians can be superimposed to represent an

arbitrary shape as shown in Fig. 50 where six Gaussians located at  0,1, 2, 3, 4, 5x  very

closely represent a sinusoid.

92

Fig. 50. Comparison of various interpolation methods used in imaging.

0 1 2 3 4 5

-1

0

1

x

f(
x
)

True Function

Known Points

Nearest-Neightbor

Bilinear

Gaussian Bases

93

4.2. Gaussians in Imaging

 The GRB was shown to be a viable interpolation/sampling method to convert

between discrete data and a continuous function. The GRB image also lends itself well to

imaging when using circular apertures such as telescopes. The point spread function for a

finite circular aperture is

  
 1

J
U C





 (4.5)

where  1
J  is the Bessel function of the first kind and C is a constant [69, 70]. The

Bessel function of the first kind is defined as

     
0

1
cos sin .

n
J n x d



   


  (4.6)

The Airy pattern, which is the intensity of the point spread function, is thus

  
 

 

2

2
12 2

jinc .
J

I C C


 


 
      

 

 (4.7)

The jinc function is often approximated as a Gaussian because the secondary oscillations

in the jinc function are small in magnitude compared to the central peak as shown in Fig.

51. By this approximation the diffraction integral leads to a Gaussian which means the

optical transfer function (OTF) is also approximately a Gaussian. Since the OTF is a

Gaussian, an image viewed through a circular aperture is resolved as a GRB network. The

GRB is thus a better approximation of an image viewed through a circular aperture than a

moderately pixelated image [3]. An example of the fictitious satellite considered

94

previously formed using GRBs shown in Fig. 52. This image appears blurred as if the

satellite were viewed through a small circular aperture.

Fig. 51. Comparison of the jinc function to a Gaussian.

Fig. 52. The fictitious satellite image formed with Gaussian radial bases.

0 1 2 3 4 5 6 7 8 9 10
0

0.25

0.5

0.75

1

x

2 jinc2(x)

exp(-x2/)

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

95

4.3. Phase Retrieval Algorithm

 The primary feature of a GRB image is it can be analytically Fourier transformed

easily and in a compact form for an arbitrary number of Gaussians. The end goal here is

to use the known points in the diffraction pattern of the light field from a source and

interpolate the data to estimate the continuous diffraction pattern. If the information in the

diffraction pattern is continuous, the phase retrieval can be performed in a continuous

framework rather than discrete. With this goal in mind, the transformations of the image

formed with GRBs must be derived.

 The image composed of N Gaussians is

    
2

2

1

1
exp

2

N

j j

j j

I A  


 
   

 
 

 (4.8)

where each Gaussian has the amplitude j
A , size j

 , and location j
 . The Fourier

transform takes the form

      2 2

1

2 exp 2 exp 2 .

N

j j j j

j

J u A iu u u     


     (4.9)

For clarity, the Fourier transform convention used for this derivation is

      exp 2 .J u I iu d   



   (4.10)

In the phase retrieval problem based on interferometry, the squared magnitude of the

Fourier transform, known as the squared coherence, is measured. The squared coherence

is thus

       2 2 2 2

1 1

2 exp 2 exp 2 .

N N

j k j k j k j k

j k

J A A u u iu         
 

       (4.11)

96

This expression reveals that the relative positions of the Gaussians, j k
  , appear in the

squared coherence as frequency components. If these frequency components are

identified, the relative position of each Gaussian can be determined. This is convenient

since the frequency components within the squared coherence magnitude can be identified

without making measurements over the entire  ,u v domain.

 A method of identifying the frequency components in the squared coherence

magnitude data is to locate maxima within the Fourier transform of the data. This Fourier

transform will be referred to as the “spectrum analysis”  Ĵ  to distinguish it from the

Fourier domain  J u . The spectrum analysis is

      

 

 

2

2

2 22 2
1 1

ˆ

2 exp .
2

N N
j kj k

j k

j k j kj k

J F J u

A A

 

   


   



  
  
 
 

 
 (4.12)

The spectrum contains 2
N Gaussians in the  space; however, the N Gaussians

corresponding to j k are at the origin. There are, therefore,  1N N  Gaussians not at

the origin. Looking closer, a useful property of the spectrum is revealed. Consider the

value of k to be constant. The entire image is contained within  Ĵ  with the j k

Gaussian at the origin. The entire  Ĵ  thus contains the true image N times with each

copy of the image translated such that one of its Gaussians is at the origin.

 Since the measured data that defines the squared coherence magnitude is typically

discrete, the Fourier transform in the spectrum analysis definition can be performed as a

97

discrete Fourier transform. This form of the spectrum analysis would reveal maxima at the

location of each Gaussian. The height of each maximum is equal to the product

2 2

j k

j k

j k

A A
 

 
 and the size of the Gaussian at each maxima is equal to  2 2

j k
  . With

the identification of each maximum location ˆ
n

 , the problem is thus to define j and k

consistently such that

 ˆ
n j k

    (4.13)

for each n . A problem can arise in identifying the maxima if two Gaussians in the spectrum

overlap such that two Gaussians cannot be distinguished. In this case, rather than looking

for maxima, fitting Gaussians to the spectrum with their position, size, and amplitude as

variables could yield the correct result. If two Gaussians perfectly overlap, this method as

documented here will fail. Therefore, based on this formulation some images cannot be

reconstructed if they contain very many Gaussians. A slight modification can be added to

address this issue, but it is unreliable and thus not discussed here.

 Solving for the indices j and k such that equation (4.13) is satisfied for each n

appears to be trivial; however, there are  1N N  possible combinations. The problem

thus becomes overwhelming very quickly. For this reason the working algorithm shown

here appeals to the geometric interpretation mentioned previously where the image is

duplicated N times in the spectrum with each instance translated. The algorithm

identifies recurring patterns and eventually identifies each of the N copies of the image.

98

 Fig. 53 below shows the steps of the algorithm which can identify the duplicated

and translated instances of the sought image within the spectrum analysis. It begins by

choosing two Gaussians and designating them as part of the master image. It then finds all

places within the spectrum where the increment between the two master Gaussians occur.

These N occurrences are the beginnings of the N instances of the image. One Gaussian

is then added to the master image at a time. If each instance of the image can find a

Gaussian such that all instances match, the added Gaussian is deemed correct. If not, a

different Gaussian is chosen and added to the master image. The process continues until

all of the Gaussians in the spectrum have been attributed to one of the N images.

 To graphically demonstrate the progression of this algorithm, consider the image

shown in Fig. 54 which is simply four Gaussians. Its Fourier transform is shown in Fig.

55. Fig. 56 shows the spectrum analysis resulting from the evaluation of equation (4.12).

The thickest arrows show the development of the master image. The other styled arrows

denote the development of the secondary duplicate image. Note that any of the translated

instances of the images shown could be considered to be the master image depending upon

the algorithm’s starting choice.

 Once the individual Gaussians in the image are found, the image can be

reconstructed using equation (4.8). The resulting image is continuous and has infinite

extent. The image function can be sampled to create a grid of discrete pixel values for

display.

99

Fig. 53. Gaussian phase retrieval flow chart.

Fig. 54. Sample image formed from Gaussians used for the phase retrieval algorithm demonstration. 50 100 150 200 250

50

100

150

200

250

Does the increment between the new Gaussian and the previous

Gaussian occur for each of the translated images?

Designate the Gaussian at the origin as the 1st Gaussian in the

master image instances.

Choose a Gaussian to use as the 2nd Gaussian in the master

image instance.

The N times the increment between the 1st and 2nd Gaussian

occurs indicates the first two Gaussians of the translated images.

Choose a Gaussian to use as the next Gaussian in the master

image instance.

Are there N Gaussians in the master image?

Return master image.

Yes

Yes

No

No
Add the Gaussians at the new increments to each image.

100

Fig. 55. The analytical Fourier transform of the image in Fig. 54

Fig. 56. Sample image spectrum analysis showing the progressive development of the four translated

images. Each image has different line styles connecting the four Gaussians in the order that the

algorithm identified the Gaussians.

True Image FT

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

FT Mag Spectrum

-100 -50 0 50 100

-100

-50

0

50

100

101

4.4. Example

 To demonstrate this technique of phase retrieval, consider the star cluster Pleiades

shown in Fig. 57. For the sake of this example, the image was created such that it can be

represented as a continuous function with nine Gaussians representing the nine main stars

in the cluster. The measured squared coherence data in Fig. 58, sampled from the

continuous Fourier transform of the image, has resolution of 1024x1024. The spectrum

analysis shown in Fig. 59 is merely the discrete Fourier transform of this 1024x1024 array.

 The spectrum was scanned to find all of the positions, widths, and amplitudes of

the Gaussians which are then used in the phase retrieval algorithm. The resolution of the

measured squared coherence data dictates the resolution of the spectrum which limits the

accuracy when determining the positions of the Gaussians in the spectrum. This limited

accuracy in turn limits the accuracy of the final image. The result of the Gaussian phase

retrieval algorithm is shown in Fig. 60. The positions of the Gaussians in the final image

are accurate to 1 2 pixel.

 It is also worth mentioning that the HIO can be used to obtain the phase estimate

for this image. The HIO with feedback parameter 0.9  and proper rectangular

background constraints requires approximately 500 iterations to converge to nearly zero

error. For this image with resolution 512x512, the stars are not well defined due to the

pixilation. The reproduced image in Fig. 61 looks fine; however, upon closer inspection

near one of the stars there is much distortion. A comparison is shown in Fig. 62 between

the topmost star in the GRB image and HIO image. In the discrete HIO image the star is

not perfectly round, and there is no clear metric for describing the radius of the star. The

102

Gaussian bases, however, give a clear metric: the standard deviation of the continuous

Gaussian. Note that the GRB allows for a discrete image to be produced at any resolution

because it is a continuous image.

103

Fig. 57. The Pleiades star cluster used as an example of GRB phase retrieval. This image serves as

both the input to the phase retrieval algorithm.

Fig. 58. The squared Fourier modulus of the Pleiades star cluster image represented as a 1024x1024

array.

True Image

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

True Image FT

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

104

Fig. 59. The spectrum analysis of the Fourier transform of the Pleiades image.

Fig. 60. The estimated image of the Pleiades resulting from the Gaussian phase retrieval algorithm

applied to the spectrum shown in Fig. 59. The continuous image is point sampled for display.

FT Mag Spectrum

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

Estimated Image

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

105

Fig. 61. 512x512 pixel result from the HIO method with a rectangular support region.

Fig. 62. The topmost star in the (a) GRB and (b) HIO images as shown in Fig. 60 and Fig. 61

respectively.

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

320 325 330 335 340 345

155

160

165

170

175

180

185

6950 7000 7050 7100 7150 7200

4100

4150

4200

4250

4300

a) GRB Result b) HIO Result

106

4.5. Conclusion

 A notable benefit of using the spectrum analysis of the squared coherence data

over directly inverse Fourier transforming, as is the case in the HIO method, is that the

Fourier domain must only contain enough measurements to identify its frequency

components. Traditional phase retrieval methods require either complete Fourier domain

coverage via measurements or some kind of estimation of the missing data. There are

potentially other methods of identifying these frequency components beyond the

discussion here which may lead to more accurate results and can tolerate the overlapping

frequency components as discussed earlier. An additional benefit of this spectrum analysis

method is the inherent continuity of the image. As shown in the HIO results, pixilation

can alter the apparent content of the image. In the example shown previously, due to the

pixilation a round star doesn’t appear round, and the boundaries of the star are vague.

 In practice the measured squared coherence data contains some amount of noise

which causes a lack of smoothness in the Fourier domain. Because the Fourier transform

of the coherence data is used to generate the spectrum, the smoothing effect of the Fourier

transform helps to alleviate the effect of noise. Since this method of phase retrieval is in

its infancy, no explicit noise analysis has been performed yet.

 The method presented here builds upon the successes and shortcoming of prior

research in the phase retrieval field but also takes a step back and approaches the problem

from a new point of view. The properties of finite aperture optics and the continuity of an

image viewed through a finite aperture lead to the Gaussian bases. The algorithm

presented here employs a recursive scheme to find each Gaussian in the image based on

107

the pattern in the spectrum analysis. This algorithm is not iterative in the sense that there

are a fixed number of recursions needed to resolve the image. This contrasts with the HIO

method and other projective methods. In these other methods a subsequent iteration can

always be performed, and in theory every subsequent iteration gives a better estimate of

the image. Here, once the correct pattern is found via recursion, a closed form equation

relates the Gaussian locations in the spectrum analysis with the bases of the image.

108

5. RECOVERY OF ASTEROID SILHOUETTES BY STELLAR OCCULTATION

 Stellar occultation in general refers to viewing an eclipse event of a star due to an

astronomical body. In particular stellar occultation typically refers to using the occultation

of a star to estimate some property of the occulter such as its size. Several successful

estimates have been made of the radius of moons and Kuiper belt objects which are

documented in sources such as [71, 72, 73, 74, 75]. The typical method involves several

observers who record the timespan in which an object occults a specific star. Each observer

has a known location on the Earth’s surface, thus the times of the occultation events can

be used to estimate the ground track of the shadow cast by the occulter. By knowing the

shape of the shadow, an estimate of the shape of the occulter can be devised. A schematic

of the system is shown in Fig. 63. The major limitation of this approach is that it requires

the object to cast a sharp shadow. In reality the edge of a shadow is subject to diffraction

effect, thus in many cases no clear shadow exists. This is especially true for small, distant

objects. Most recent research in the field of stellar occultation has focused on obtaining

more precise estimates of the nominal radius of the occulter [76]. The discussions in [77]

expand the circular estimate to include ellipses. The work presented here progresses

beyond the estimation of simple geometric shapes. Here the general shape of an asteroid

is estimated without a priori knowledge of the object’s shape. The discussions in this

section are based on the work in [4].

 As shown in Fig. 64, the effect of the occulter on the light field is based upon the

distance of the observer from the object, the nominal radius of the object, and the mid-

109

band wavelength. The Fresnel region is the region where a dark shadow zone exists. It is

defined by the Fresnel number being greater than unity, where the Fresnel number is

defined as

2
a

F
z

 (5.1)

where a is the objects nominal radius, z is the distance of the observer from the object,

and  is the narrow-band mean wavelength of light considered [78]. A sharp shadow

only exists for 1F . Since relatively small near earth asteroids are considered here, the

Fresnel number is typically less than unity which means no sharp shadow exists at the

observer’s location. Rather, only an interference pattern exists because the observer is

within the Fraunhofer region (defined by 1F ). This inteference of the wave field, herein

called the shadow pattern, is shown for the asteroid Itokawa at various values of z in Fig.

65b-d. It is thus suggested that characterizing an object geometrically based on the shadow

is not optimal. The object should be characterized by analyzing the interference pattern it

produces through an intensity mapping technique which requires a specialized method to

solve the phase retrieval problem.

110

Fig. 63. Schematic of the traditional stellar occultation system which relies on a shadow with sharp

edges.

Fig. 64. Schematic of an object’s shadow showing the shadow zone (darkly shaded) and interference

zone (lightly shaded) and the Fresnel and Fraunhofer regions. This model assumes a point source to

the left of the occulter.

Data Collection
and

Time Keeping

Array of Light
Collectors

Distant
Star

Occulting
Asteroid

Shadow
Region

Velocity Relative
to Shadow

Fresnel Region

Fraunhofer Region

Shadow Zone

Interference Zone

Observation

Location

111

Fig. 65. Comparison of shadow patterns for the asteroid Itokawa at several Fresnel number values.


x
 [arcsec]

a) True Asteroid Silhouette


y
 [

a
rc

s
e
c
]

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
-4

-1.5

-1

-0.5

0

0.5

1

1.5

x 10
-4

X [m]

b) Shadow Pattern for F=0.29 and z=3[au]

Y
 [

m
]

-1000 -500 0 500 1000

-1000

-500

0

500

1000

X [m]

c) Shadow Pattern for F=0.87 and z=1[au]

Y
 [

m
]

-1000 -500 0 500 1000

-1000

-500

0

500

1000

Y
 [

m
]

X [m]

d) Shadow Pattern for F=3.5 and z=0.25[au]

-1000 -500 0 500 1000

-1000

-500

0

500

1000

112

 Table 3 summarizes four size classifications of asteroids and gives an estimated

number of objects within the solar system in each classification. The estimated number of

objects in each classification is based on the historical discovery trends. The table shows

that very few of the estimated asteroids within the 40 to 140 meter range have been

discovered. Based on this data, an imaging system is desired which can observe these

objects. The traditional method would require the asteroid to pass close enough to have a

Fresnel number of greater than 50 which would require it to pass closer to the Earth than

the lunar orbit. The new method discussed here aims to function when the Fresnel number

is as low as 0.5 which gives the system a range much larger than the traditional method.

A new method is thus sought to characterize small asteroids which are large enough to

cause significant damage upon impact before they threaten the Earth.

113

Table 3. Summary of asteroid size’s relationship to the observation distance required for certain

Fresnel numbers. Red denotes troublesome quantities and requirements. Green denotes a safe

observation criterion.

Diameter (m) >1000 1000-140 140-40 40-1

Estimated 966 14,000 ~285,000 --

Observed 899 4,557 2,259 1,685

% Observed 93% ~33% ~1% --

Distance (km) for F=50 >10,000,000 <10,000,000

>200,000

<200,000

>15,000

<15,000

>10

Distance (au) for F=50 >0.07 <0.07

>0.001

<0.001

>0.0001

<0.0001

>7e-8

Distance (km) for F=0.5 >1,000,000,000 <1,000,000,000

>20,000,000

<20,000,000

>1,500,000

<1,500,000

>1,000

Distance (au) for F=0.5 >7 <7

>0.1

<0.1

>0.01

<0.01

>7e-6

114

 To formulate the problem, consider the object plane with spatial coordinates

 ,x x y and an observation plane in the Fraunhofer region with spatial coordinates

 ,X X Y . Both planes are parallel and separated by the distance z , as shown in Fig. 64.

The object plane can be described by the view angle from the observation location yielding

 ,
x y

x z    and for convenience the observation plane coordinates can be scaled as

 ,u X z u v  . The star far to the left in Fig. 64 is assumed to be a point source. Since

the occulter is assumed to lie within the object plane, its shape defines the complex field

at the image plane. The field is thus characterized by the silhouette function   which

is defined as

  
0, if is inside the asteroid profile

1, otherwise.





  



 (5.2)

Propagating the field from the point source to the object plane and then to the observation

plane using the Huygens-Fresnel principle applied to shadows gives the Fresnel diffraction

equation [69, 76, 78, 79, 80]

    
2

2
exp exp .

z i z i
U u X d

 
    

  

   
       

   
 (5.3)

Notice that equation (5.3) contains the exponential term  exp i z    which

introduces a quadratically increasing phase shift into the field. The equation thus cannot

be discretized and turned into a discrete Fourier transform, as is done in the traditional

phase retrieval problem, unless the discretization yields elements much smaller than the

wavelengths of the term  exp i z    [76]. Since typically 1 10z e , such a

115

resolution would be prohibitive computationally when considering an object plane large

enough to encompass an astronomical object. Additionally, a discrete Fourier transform

would not properly capture the entire image plane out to infinity as the integral in (5.3)

requires. A continuous solution is thus the only apparent feasible route.

 The formal problem statement here is to devise an algorithm to estimate the shape

of the occulting object’s silhouette function   based on knowledge of the intensity

distribution (shadow pattern)    
2

I u U u . The method should be able to tolerate a

reasonable level of noise in the intensity data and preferably does not require spatially

high resolution knowledge of the shadow pattern or a priori knowledge.

5.1. Data Collection

 Initial designs for a stellar occultation observation system with the capability to

image asteroids use a linear array of light collecting apertures spanning several kilometers.

Since the asteroid and its shadow are moving relative to the apertures, each aperture has a

chance to measure the wave field intensity,  I u , along a line in the shadow pattern

 ,X Y coordinate system [74]. A schematic of the system is shown in Fig. 66 which

portrays the path of the shadow pattern moving across a linear array of observers.

Preliminary designs for this system place the apertures on satellites in a “string of pearls”

constellation to mitigate any atmospheric interferences.

116

Fig. 66. Schematic of the asteroid casting a shadow which moves across observers.

Occulter

Observer Array

Shadow Path

117

5.2. Phase Retrieval Algorithm

 Equation (5.3) is the standard Fresnel diffraction equation which describes the

wave field some distance from the occulting object; however, its magnitude is the known

quantity when measuring the changes in the wave field from the occulted star [81]. To

simplify the expression it can be multiplied by the phase factor  exp i zu u  which

has a magnitude of unity and is not a function of the variable of integration  . This factor

completes the square and gives the form

   

   

2

2

2

2

2

2
exp

exp .

z i z i z i z
I u u u u d

z i z
u d

  
    

   


  

 

 
       

 

 
   

 





 (5.4)

The phase factor is benign since only the magnitude is preserved when defining  J u .

Equation (5.4) can be rewritten in the convenient form

      

      

   

2

2 2

2

2

2

2

2 2

2

2 2

1 1 exp

exp 1 exp

exp exp

z i z
I u u d

z i z z i z
u d u d

z i z z i z
u d u d




  

 

 
    

   

 
   

   

 
       

 

   
        

   

   
      

   



 

 

 (5.5)

where  is the domain where   0  . The question thus becomes how to describe the

region  such that its shape can be estimated. Since it is known that the shape of the

occulter may not be a standard geometric shape, an obvious choice is to describe  using

a grid of binary values. This would turn the second integral in (5.5) into a discrete

118

summation of continuous integrals over the elements in this grid [82]. If the  ,i j element

of the grid covers the domain

   2

, , ,
, 0 0

i j x y x x i x y y j y
A                 (5.6)

and has the value ,i j
 , equation (5.5) becomes

   

   

2

,

2

2

2

,

,

exp

 1 exp .
i j

i j
A

i j

z i z
I u u d

z i z
u d


 

 


 

 

 
  

 

 
    

 



 

 (5.7)

Making use of the complex form of the Fresnel integral [83]

  
2

0
exp ,

2

x i t
E x dt

 
  

 
 (5.8)

the integrals in equation (5.7) expand to

 
,2 ,2

,1 ,1

2

,2 ,1

,2 ,1

2 2
exp

2 2
.

y x

y x

x x

y y

i z z z
u d E E

z z
E E

 

 


   

  

 
 

     
           

       

    
        
     

 

 (5.9)

Using this expression, equation (5.7) yields [77]

   

   

   

,

,

, ,

2

y, j y, j

1
1

2

2 2

2 2
.

i j

i j

x i x i

I u i

z z
E x u E u

z z
E y v E v

 
 

 
 



   

    
          

    

    
          

    



 (5.10)

119

 The problem now is to estimate the  ,i j components of the grid which have

,
0

i j
  . This can be done by a simple guess-and-check method where the region  is

guessed, the field’s squared magnitude is computed using equation (5.10), and it is

compared to the measured intensity. When a suitable estimate for  is found the two

should closely match. The only difference between the two would be the fact that the true

silhouette function does not follow the grid pattern that the estimation assumed [82]. The

grid should thus be dense enough to mitigate this error.

 An additional convenience of this method is the relaxed requirements on the

intensity data resolution. The intensity data and the silhouette grid can be different

resolutions. Additionally, the intensity data can be sparse since it is only used for a

comparison and not a Fourier transform as is done in the traditional phase retrieval

problem. The number of intensity measurements required is discussed in section 5.5.

 The simplest method to use for the guess and check is a raster scan across the grid.

Each grid element
,i j

 is flipped in value and the intensity distribution error is checked

for improvement. The error between the estimated and measured intensity distributions

can be defined by

    
22

, ,

ˆ

ˆˆ ˆ
i j i j

u

e J u J u


  (5.11)

where ˆ ˆ,
ˆ

i j
u are the locations of measurements and  ,

ˆ ˆ
i j

J u are the measured values. If the

error decreases for a change to the grid, it is kept; otherwise the value is not changed.

While this appears to be a naïve approach, it often works as will be shown.

120

 Using the error metric in Equation (5.11) has some caveats. There exist local

minima in the error which can cause the algorithm to stagnate. A convenient indication is

if no error reduction takes place for an entire iteration it is known that the method has

stagnated. A simple method to help the algorithm along is to randomly flip a few pixel

values in the image. The optimization of this algorithm to mitigate the effect of local

minima is left to subsequent work. Some ideas include testing multiple pixels at one time.

Within this idea the one pixel is located using the raster scan and the second pixel is chosen

at random. Since such a method introduces random behaviors, only the simplest raster

scan method is shown here since the performance is deterministic.

5.3. Example

 To demonstrate the silhouette estimation process, consider the asteroid Itokawa as

viewed from 1 astronomical unit away. The true silhouette is based on an image from the

Hayabusa mission and is shown in Fig. 67. The image is 64 64 pixels and Itokawa is 40

pixels wide. Itokawa is known to be about 535m long, so each pixel in the image is

13.4m wide/tall. The angular resolution is thus 5
1.8 10 arcsec


 , and the field of view is

3
1.2 10 arcsec


 . This image is, therefore, unresolvable by even the Hubble telescope and

is even not feasible for optical astronomical interferometers. If green light is considered,

as is common in optical interferometry, the mean wavelength is 7
5.5 10 m


 . Referring to

Equation (5.1) the Fresnel number is thus 0.87. Since the aphelion and perihelion of

Itokawa are 1.695au and 0.953au respectively, this example represents a reasonable

case of Itokawa viewed from Earth. The intensity distribution for these parameters based

upon the silhouette in Fig. 67 is shown in Fig. 68. Note the bright regions within the

121

silhouette which correspond to a diffraction effect similar to the Arago spot which

reinforces the claim that the traditional occultation method of timing the disappearance

and reappearance of the occulted star is unreliable [79, 83, 84].

 In practice, the entire intensity map cannot be known. If the intensity is known on

a grid spanning two kilometers every twenty meters this represents a 100 100 grid as

shown in Fig. 68. It is not necessary for the measurements to follow a grid pattern. This is

simply done here to make the data more convenient to display in a figure. A detailed

explanation of the data collection for this application is discussed in [81] and in section

5.5. It is advantageous for the measurements to span an area large enough to capture the

distorted silhouette but also small enough to avoid the high frequency fluctuations that

occur far away from the origin as evident in Equation (5.5). Although these fluctuations

are small, proper measurements far away from the origin would require tight tolerances

on spatial positioning to resolve these fluctuations. Additionally, far away from the origin

the field amplitude is approximately constant according to the Fresnel integral.

Information far away from the origin is thus not as useful as information near the origin.

 For this example the silhouette is assumed initially to be all white. The pixels in

the grid are tested by flipping their values from top to bottom, left to right in a regular

pattern and looking for a decrease in the error defined in Equation (5.11). A complete scan

across the grid is designated as one iteration. Fig. 69 shows the error defined by Equation

(5.11) through ten iterations. The image after just one iteration is shown in Fig. 70. The

general shape of the asteroid is already apparent since the most error reduction occurs in

the first iteration. Although often unnecessary for convergence, a priori knowledge can

122

speed convergence. The user can manually edit the estimate before continuing to the next

iteration based on intuitive knowledge that an asteroid will not typically have holes in it

or any other a priori knowledge. This was not done for this example to prove convergence

without this knowledge.

 The final silhouette is shown in Fig. 71 where the input intensity matches the

transformation of the estimated image, i.e. the error is nearly zero. Notice that the error

drops drastically near the last iterations. This is because a single incorrect pixel accounts

for the majority of the error value.

 The result of the 32 32 image can be used as the initial estimate of a higher

resolution estimation. This has been implemented with great success. Initially a 16 16

or similar coarse image is computed. Its estimate serves as the input to the 32 32 image

recovery. This nested grid approach can reduce the number of iterations needed to recover

high resolution images and helps to ensure convergence. Using this technique the exact

64 64 silhouette was estimated using the 32 32 estimate as the initial guess in only ten

iterations.

123

Fig. 67: The true silhouette of the asteroid Itokawa pixelated in a 64x64 grid based on images from

[85] and scaled for Itokawa as viewed from 1 astronomical unit away.

Fig. 68: The coarse grid of intensity data for the asteroid Itokawa viewed with a Fresnel number of

0.87 which serves as the input to the phase retrieval algorithm.


x
 [arcsec]


y
 [

a
rc

s
e
c
]

-5 -4 -3 -2 -1 0 1 2 3 4 5

x 10
-4

-5

-4

-3

-2

-1

0

1

2

3

4

5

x 10
-4

X [m]

Y
 [

m
]

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

124

Fig. 69: The error between the intensity distribution of the estimated image and the measured

intensity data.

5
Fig. 70: The estimated silhouette of Itokawa pixelated in a 32x32 grid after 1 iteration.

0 1 2 3 4 5 6 7 8 9 10
10

1

10
2

10
3

10
4

Iteration

E
rr

o
r


x
 [arcsec]


y
 [

a
rc

s
e
c
]

-6 -4 -2 0 2 4 6

x 10
-4

-6

-4

-2

0

2

4

6

x 10
-4

125

Fig. 71: The estimated silhouette of Itokawa pixelated in a 32x32 grid after 10 iterations.


x
 [arcsec]


y
 [

a
rc

s
e
c
]

-6 -4 -2 0 2 4 6

x 10
-4

-6

-4

-2

0

2

4

6

x 10
-4

126

5.4. Silhouette Recovery in the Presence of Noise

 The intensity measurements here are independent recordings of the field intensity.

Because of the quantization of light (in photons), the output of any intensity measurement

device has inherent noise due to randomness of the arrival times of individual photons.

Therefore, it is important that the method be capable of converging when the intensity

contains random noise. The noise model used here is commonly used in Michelson

interferometry and takes the form discussed previously [86, 87]. The model is

           
2 2

1 2
ˆ ˆˆ ˆ ˆ 1 0, 0,J u U u U u N iN     (12)

where  0,
i

N  is independent random Gaussian noise with a standard deviation of 

[1, 42, 88]. In an attempt to quantify the performance of this algorithm in the presence of

noise, the 32 32 case for Itokawa was used in a Monte Carlo simulation. Twenty-five

image estimates were constructed for different realizations of the noise at several noise

levels, and no extra measures were implemented to mitigate local minima. The noise levels

correspond to typical discussions of noise in phase retrieval [43, 61]. The mean errors of

the twenty-five estimates at each noise level reveal an interesting trend shown in Fig. 72.

As expected, the error decreases very quickly during the first iteration. For some noise

levels the error later stagnates at a non-zero level while some converge to nearly zero.

 The final error values are shown in Fig. 73. The trend that at near zero noise levels

the algorithm typically stagnates at a higher error level than at noise levels between five

and ten percent is unexpected. At near zero noise levels the standard deviations of the

Monte Carlo results are much larger than at higher noise levels. The stagnated error

127

increases linearly above ten percent. The erratic behavior for near noiseless cases is not

currently understood.

 An example of the result for a noise standard deviation of 0.2 is shown in Fig. 74.

The result contains some incorrect pixels but the shape of Itokawa is clearly evident. This

result can be greatly improved by a simple Gaussian image filter applied to the intensity

map. The result after filtering the intensity data using a Gaussian with a standard deviation

of three pixels is shown in Fig. 75. Only two pixels in the final silhouette are incorrect and

one is far enough away from the silhouette to be definitively attributed to noise. A

comparable Monte Carlo simulation was performed implementing the Gaussian image

filter and the result showed no difference in the mean error near the zero noise regime;

however, for higher noise levels the mean error decreased by about 25%. The result is

shown in Fig. 76.

128

Fig. 72: Monte Carlo results showing the mean error of 25 trials at several noise levels.

Fig. 73: Monte Carlo results showing the final mean error of 25 trials at several noise levels.

0

5

10 0 0.05 0.1 0.15 0.2 0.25

0

500

1000

Noise StDevIteration

M
e
a
n
 E

rr
o
r

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

Noise StDev

%
 M

a
x
 E

rr
o
r

a
ft

e
r

1
0
 I

te
ra

ti
o
n
s

129

Fig. 74: Example result after 10 iterations with a noise standard deviation of 0.2.

Fig. 75: Example result after 3 iterations with a noise standard deviation of 0.2 and a Gaussian filter

applied to the intensity data.


x
 [arcsec]


y
 [

a
rc

s
e
c
]

-6 -4 -2 0 2 4 6

x 10
-4

-6

-4

-2

0

2

4

6

x 10
-4


x
 [arcsec]


y
 [

a
rc

s
e
c
]

-6 -4 -2 0 2 4 6

x 10
-4

-6

-4

-2

0

2

4

6

x 10
-4

130

Fig. 76: Monte Carlo results showing the final mean error of 25 trials at several noise levels with a

Gaussian image filter applied to the intensity data.

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

Noise StDev

%
 M

a
x
 E

rr
o
r

a
ft

e
r

1
0
 I

te
ra

ti
o
n
s

131

5.5. Data Coverage and Aperture Positioning

 The previous discussions used knowledge of the shadow pattern which spanned a

rectangular grid. In practice, the shadow pattern is only known at specified positions. Since

the shadow pattern is moving at a high velocity relative to the Earth, each aperture can

collect intensity measurements in a straight line across the shadow pattern. Shown in Fig.

77 is an example of the detected intensity distribution by 20 equally spaced apertures each

75m apart with 128 measurements along each line. To quantify the quality of the data

coverage the ratio of the number of measurements to the number of pixels in the silhouette

estimate is defined as

M easurements

.
Pixels in Silhouette

  (13)

The definition of  can be used to establish a theoretical minimum number of

measurements. The number of constraints on the system—the number of measurements—

should be greater than the number of unknowns—the number of pixels in the silhouette

estimate.

 In the case of the measurements shown in Fig. 77 used to recover a 32 32 pixel

silhouette estimate, the ratio  is 2.5. Perfect silhouette recovery was achieved after 3.6

iterations as shown in Fig. 78. For half the number of apertures, the intensity data is shown

in Fig. 79. In this case  is 1.25—slightly above the theoretical minimum. The result is

shown in Fig. 80. If the number of apertures in the data collection is reduced to 8, the ratio

 is reduced to exactly unity. In this case the recovery is theoretically possible; however,

132

the result shown in Fig. 82 is not clear. The threshold of data collection for practical

recovery requires approximately 2  .

 The analysis method used for the previous results can be used for testing various

arrangements and spacing of the apertures and can include error in the position knowledge

of each aperture. A specific case shown here is the situation where the apertures are

assumed to be equally spaced; however, they are actually randomly perturbed. Consider

the situation shown in Fig. 83 where the 20 apertures are assumed to be equally spaced

but their actual positions are independently randomly offset by a normal random

distribution with a standard deviation of 5 meters. The result shown in Fig. 84 shows only

a single pixel is incorrect. If the standard deviation of the position errors is increased to 25

meters, however, the image suffers greatly as shown in Fig. 85 and Fig. 86. An exact

quantification of the allowable position error is difficult to obtain because of the subjective

nature of the quality of the image; however, the 5 meter and 25 meter perturbation

examples shown here probably show a lower and upper bound on the allowable position

error.

133

Fig. 77: Data collection pattern for 20 equally spaced apertures each 75m apart. The red regions

between the lines of data denotes the absence of data. There are 128 intensity measurements along

each apertures path through the shadow pattern. The full intensity distribution is identical to Fig.

68.

Fig. 78: Silhouette estimate for 20 apertures making 128 measurements each, i.e. ρ=2.5.

X [m]

Y
 [

m
]

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

-1000

-800

-600

-400

-200

0

200

400

600

800

1000


x
 [arcsec]


y
 [

a
rc

s
e
c
]

-6 -4 -2 0 2 4 6

x 10
-4

-6

-4

-2

0

2

4

6

x 10
-4

134

Fig. 79: Data collection pattern for 10 equally spaced apertures each 150m apart. The red regions

between the lines of data denotes the absence of data. There are 128 intensity measurements along

each apertures path through the shadow pattern. The full intensity distribution is identical to Fig.

68.

Fig. 80: Silhouette estimate for 10 apertures making 128 measurements each, i.e. ρ=1.25.

X [m]

Y
 [

m
]

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

-1000

-800

-600

-400

-200

0

200

400

600

800

1000


x
 [arcsec]


y
 [

a
rc

s
e
c
]

-6 -4 -2 0 2 4 6

x 10
-4

-6

-4

-2

0

2

4

6

x 10
-4

135

Fig. 81: Data collection pattern for 8 equally spaced apertures each 187.5m apart. The red regions

between the lines of data denotes the absence of data. There are 128 intensity measurements along

each apertures path through the shadow pattern. The full intensity distribution is identical to Fig.

68.

Fig. 82: Silhouette estimate for 8 apertures making 128 measurements each, i.e. ρ=1. This results

demonstrates the need for more measurements than the theoretical minimum requirement.

X [m]

Y
 [

m
]

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

-1000

-800

-600

-400

-200

0

200

400

600

800

1000


x
 [arcsec]


y
 [

a
rc

s
e
c
]

-6 -4 -2 0 2 4 6

x 10
-4

-6

-4

-2

0

2

4

6

x 10
-4

136

Fig. 83: The randomly perturbed positions of the measurements with a standard deviation of 5

meters (a) and the erroneously assumed positions of the measurements (b). The difference is not

easily discerned.

X [m]

Y
 [

m
]

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

(a)

(b)

X [m]

Y
 [

m
]

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

137

Fig. 84: The estimated silhouette recovered from 20 apertures randomly perturbed with a standard

deviation of 5 meters.


x
 [arcsec]


y
 [

a
rc

s
e
c
]

-6 -4 -2 0 2 4 6

x 10
-4

-6

-4

-2

0

2

4

6

x 10
-4

138

Fig. 85: The randomly perturbed positions of the measurements with a standard deviation of 25

meters (a) and the erroneously assumed positions of the measurements (b).

X [m]

Y
 [

m
]

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

(a)

(b)

X [m]

Y
 [

m
]

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

139

Fig. 86: The estimated silhouette recovered from 20 apertures randomly perturbed with a standard

deviation of 25 meters.


x
 [arcsec]


y
 [

a
rc

s
e
c
]

-6 -4 -2 0 2 4 6

x 10
-4

-6

-4

-2

0

2

4

6

x 10
-4

140

6. CONCLUSIONS

 In this work the phase retrieval problem was explored with the focus being the

various formulations and applications of the problem. The introduction discussed the three

portions of the problem. The first portion of the problem is understanding the propagation

of a light wave field. The historical evolution of the light propagation model was discussed

and the modern Huygens-Fresnel principle introduced. The Huygens-Fresnel principle is

a near perfect approximation of the mapping from a light source to the observed wave

field some distance away. It was also used here to derive the Van Cittert-Zernike

theorem—a cornerstone of interferometry. Both of these derivations showed that the

mapping is the Fourier transform which serves as the basis of most phase retrieval

solutions.

 The second portion of the phase retrieval problem is the method of measuring the

wave field’s intensity at the observation location. Derivations were shown for how an

amplitude interferometer and an intensity correlation interferometer measure the mutual

coherence of the wave field. The mutual coherence was shown to be proportional to the

magnitude of the Fourier transform of the light source via the Van Cittert-Zernike theorem.

This led to the heart of the classical phase retrieval problem: the estimation of the phase

of the Fourier transform of the light source based on knowledge of the Fourier transform’s

magnitude. Similarly, the method of phase retrieval using Gaussian basis functions was

shown to be viable. This method capitalized on the optical transfer function’s form for a

circular aperture as the data collection apparatus. Lastly, the occultation method was

141

shown to be a practical way of measuring the wave field resulting from an asteroid

occulting a star by measuring the intensity of the field at various spatial and temporal

locations.

 The final portion of the phase retrieval problem is the estimation of the phase of

the measured wave field. Three distinct methods of performing the estimation process

were explored each within different frameworks.

 The first method built upon Gerchberg and Saxton’s Error-Reduction method,

Fienup’s Hybrid Input-Output methods, and subsequent works by various researchers. A

deficiency was identified within most current phase retrieval methods in how they handle

measurement noise. Since the signal-to-noise level is one of the most prominent

difficulties encountered in phase retrieval applications, a method was presented here

which is capable of filtering the measured data. Unlike other attempts to solve this

problem, the solution here was derived specifically to filter noise and has an analytical

rationale. Two types of examples were shown to demonstrate this method’s abilities. An

example using a typical image was shown in which the measurement noise metric was

reduced by 62% and other trials of this method have sometimes (but rarely) shown over

90% noise reduction. Other phase retrieval algorithms showed worse convergence

behavior given the same noisy input data and comparable parameter values. Examples

were also shown using a two-dimensional case which clearly shows how each algorithm

performs projections to converge to the intersection of the Fourier modulus and image

support domains. Within these examples, the relaxed Fourier modulus projection showed

favorable performance when compared to the classical Fourier modulus projection.

142

 The second method of solving the phase problem was formulated using an image

formed with Gaussian bases. A recursive method was derived capable of exactly solving

the phase problem and recovering the geometry of the light source. It was only shown to

work here for a star cluster, because in its current form the algorithm only works if the

true image is formed from less than a dozen Gaussians. A notable benefit of a phase

retrieval solution using Gaussian bases is the existence of a definitive error metric. That

is, it is clearly known whether or not the algorithm has converged and whether it has

converged to the true solution. While the applications of this method are limited because

of the restriction on the number of Gaussian bases in the image, it is a step towards a

universal analytical solution.

 The final method of phase retrieval presented here was a specialized formulation

applied to recovering the silhouette of an asteroid occulting a star. Since this method

required the use of the Fresnel diffraction equation instead of the Van Cittert-Zernike

theorem to describe the light’s propagation, the Fourier transform could not be used as a

mapping between the source and observation planes. This led to an entirely new method

being developed. Where the traditional phase retrieval method has a closed loop, this new

method is a guess and check method because the Fresnel diffraction equation cannot be

inverted analytically. This method was shown to be able to theoretically recover the

silhouette of an asteroid with resolution far surpassing any current optical imaging system.

The solution traded efficiency and simplicity found in the classical phase retrieval method

for computation expense and computer memory usage. Where the classical phase solution

is able to affect every pixel in an iteration by performing Fast Fourier Transforms, this

143

solution method uses pre-computed solutions to the Fresnel integral and summations of

large arrays of numbers. It is thus much more computationally and memory intensive.

Since these computations are performed offline, it is suggested that these expenses are not

prohibitive. The performance of this algorithm was explored in the presence of three

adverse effects. The theoretical and practical minimum number of measurements was

derived. The performance was shown to be robust in the presence of noise. Finally, the

uncertainty in the location of the apertures was shown to have a small effect. Additionally,

it was shown that a low resolution silhouette estimate can be used as the initial guess for

a higher resolution estimate. This nested grid approach can greatly reduce the computation

time required for high resolution estimates. Additionally, the motivation for such an

imaging system was justified based on the statistics of 40 to 140 meter asteroid discovery

rates.

 The research presented here thoroughly explored the various parts of the phase

retrieval problem. Contribution have been made and published which both progress the

existing state-of-the-field phase retrieval methods and explore new formulations and

applications of the phase retrieval problem.

144

REFERENCES

[1] R. Trahan and D. Hyland, "Mitigating the effect of noise in the hybrid input–output

method of phase retrieval," Applied Optics, vol. 52, no. 13, pp. 3031-3037,

2013.

[2] R. Trahan and D. Hyland, "Mitigating the Effect of Noise in Iterative Projection

Phase Retrieval.," in Proceedings of the 2014 Imaging and Applied Optics:

Optics and Photonics Conference, Seattle, 2014.

[3] R. Trahan and D. Hyland, "Phase retrieval of images using Gaussian radial bases,"

Applied Optics, vol. 52, no. 36, pp. 8627-8633, 2013.

[4] R. Trahan and D. Hyland, "Phase Retrieval Applied to Stellar Occultation for

Asteroid Characterization," Applied Optics, vol. 53, no. 15, pp. 3540-3547,

2014.

[5] S. Singh, Fundamentals of Optical Engineering, Darya Ganji: Discovery

Publishing House, 2009.

[6] M. D. Fayer, Absolutely Small: How Quantum Theory Explains Our Everyday

World, New York: American Management Association, 2010.

[7] R. Hooke, Micrographia: or, Some Physiological Descriptions of Minute Bodies

Made by Magnifying Glasses, London: J. Martyn and J. Allestry, 1665.

[8] P. Hariharan, Basics of Interferometry, 2nd ed., San diego, Ca: Elsevier, 2007.

145

[9] T. Young, "On the Theory of Light and Colours," Philosophical Transactions of

the Royal Society of London, vol. 92, pp. 12-48, 1802.

[10] A. Ghatak, Optics, 4th ed., West Patel Nagar: McGraw-Hill, 2009.

[11] G. J. Gbur, Mathematical Methods for Optical Physics and Engineering,

Cambridge, GBR: Cambridge University Press, 2010.

[12] Physclips, "Diffraction from a single slit. Young's experiment with finite slits.,"

[Online]. Available:

http://www.animations.physics.unsw.edu.au/jw/light/single-slit-diffraction.html.

[Accessed 17 1 2014].

[13] "Young's Double Slit Experiment," [Online]. Available:

http://cnx.org/content/m42508/latest/?collection=col11406/latest. [Accessed 04

06 2014].

[14] W. H. Steel, Interferometry, 2nd ed., New York, NY: Cambridge University Press,

1983.

[15] P. H. van Cittert, "Die Wahrscheinliche Schwingung Verteilung in Einer von Einer

Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene," Physica, vol.

1, p. 201, 1934.

[16] C. Foellmi, "Intensity interferometry and the second-order correlation function g^2

in astrophysics," Astonomy & Astrophysics, vol. 507, no. 3, pp. 1719-1727,

2009.

146

[17] E. H. Linfoot, Fourier Methods in Optical Image Evaluation, London: The Focal

Press, 1964.

[18] M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V.

Mahajan and E. Van Stryland, Handbook of Optics, 3 ed., vol. 2, New York:

McGraw-Hill Professional, 2009.

[19] J. A. Roberts, Indirect Imaging: Measurement and Processing for Indirect Imaging,

Cambridge: Cambridge University Press, 1984.

[20] G. E. Hale, "Wikipedia," 1922. [Online]. Available:

http://en.wikipedia.org/wiki/File:Hooker_interferometer.jpg. [Accessed 30 5

2014].

[21] "Navy Prototype OpticalInterferometer (NPOI)," [Online]. Available:

http://usic.wikispaces.com/Navy+Prototype+OpticalInterferometer+(NPOI).

[Accessed 30 5 2014].

[22] R. Hanbury Brown and R. Q. Twiss, "A New Type of Iterferometer for Use in

Radio Astronomy," Philosophical Magazine, vol. 45, no. 366, 1954.

[23] R. Hanbury Brown and R. Q. Twiss, "Interferometry of the Intensity Fluctuations

in Light," Proceedings of the Royal Society of London, vol. 242, no. 1230, pp.

300-324, 5 Nov 1957.

[24] R. Hanbury Brown, "Stellar Interferometer at Narrabri Observatory," Nature, vol.

218, pp. 637-641, 1968.

147

[25] R. Hanbury Brown and R. Q. Twiss, "A Test of a New Type of Stellar

Interferometer on Sirius," Nature, vol. 178, no. 4541, pp. 1046-1048, 1956.

[26] R. H. Brown, "Stellar Interferometer at Narrabri Observatory," Nature, vol. 218,

pp. 637-641, 1968.

[27] J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang and L. A. Nagahara, "Atomic

Resolution Imaging of a Carbon Nanotube from Diffraction Intensities,"

Science, vol. 300, p. 1419, 2003.

[28] I. A. Vartanyants, I. K. Robinson, J. D. Onken, M. A. Pfeifer, G. J. Williams, F.

Pfeiffer, H. Metzger, Z. Zhong and G. Bauer, "Coherent x-ray diffraction from

Quantum dots," Physical Review B, vol. 71, p. 245302, 2005.

[29] M. Pfeifer, G. K. Williams, I. A. Vartanyants, R. Harder and I. K. Robinson,

"Three-dimensional mapping of a deformation field inside a nanocrystal,"

Nature Netters, vol. 442, pp. 63-66, 2006.

[30] H. H. Rose, "Optics of High-Performance Electron Microscopes," Science and

Technology of Advanced Materials, vol. 9, no. 014107, pp. 1-30, 2008.

[31] R. G. Lyon, "HST phase retrieval: a parameter estimation," in Applications of

Digital Image Processing XIV, San Diego, 1991.

[32] J. R. Fienup, J. C. Marron, T. J. Schulz and J. H. Seldin, "Hubble Space Telescope

characterized by using," Applied Optics, vol. 32, no. 10, pp. 1747-1767, 1 4

1993.

148

[33] H. A. Arsenault and K. Chalasinska-Macukow, "The Solution to the Phase

Retrieval Problem Using the Sampling Theorem," Optics Communications, vol.

47, no. 6, pp. 380-386, Oct 1983.

[34] R. W. Gerchbert and W. O. Saxton, "A Practical Algorithm for the Determination

of the Phase from Image and Diffraction Plane Pictures," Optik, vol. 35, p. 237,

1972.

[35] J. R. Fienup, "Reconstruction of an Object from the Modulus of Its Fourier

Transform," Optics Letters, vol. 3, no. 1, pp. 27-29, July 1978.

[36] N. C. Gallagher and B. Liu, "Convergence of a Spectrum Shaping Algorithm,"

Applied Optics, vol. 13, no. 11, pp. 2470-2471, 1974.

[37] J. R. Fienup, T. R. Crimmins and W. Holsztynski, "Reconstruction of the support

of an object from the support of its autocorrelation," JOSA, vol. 72, no. 5, pp.

610-624, 1982.

[38] J. R. Fienup, "Phase Retrieval Algorithms: A Comparison," Applied Optics, vol.

21, no. 15, pp. 2758-2769, 1 Aug 1982.

[39] S. Marchesini, H. He, H. N. Chapman, S. P. Hai-Riege, A. Noy, M. R. Howells, U.

Weierstall and J. C. Spence, "X-ray image reconstruction from a diffraction

pattern alone," Physical Review B, vol. 68, no. 140101, pp. 1-4, 2003.

[40] J. Miao, D. Sayre and H. N. Chapman, "Phase retrieval from the magnitude of the

Fourier transforms of nonperiodic objects," J. Opt. Soc. Am. A, vol. 15, no. 6,

pp. 1662-1669, 1998.

149

[41] D. Dravins, S. LeBohec, H. Jensen and P. Nunez, "Optical intensity interferometry

witht eh Cherenkov Telescope Array," Astroparticle Physics, vol. 43, pp. 331-

347, March 2013.

[42] R. H. Brown and R. Q. Twiss, "The question of correlation between photons in

coherent light rays," Nature, vol. 178, no. 4548, pp. 1447-1448, 1956.

[43] G. Liu, "Object reconstruction from noisy holograms: multiplicative noise model,"

Optics Communications, vol. 79, no. 6, pp. 402-406, 1990.

[44] R. Bates and D. Mnyama, Advances in Electronics and Electron Physics, vol. 67,

P. W. Hawkes, Ed., Toulous: Academic Press, 1987.

[45] C. M. Caves, "Quantum-mechanical noise in an interferometer," Phy. Rev. D, vol.

23, pp. 1693-1708, 1981.

[46] S. Marchesini, "A unified evaluation of iterative projection algorithms for phase

retrieval," Review of Scientific Instruments, vol. 78, no. 011301, pp. 1-11, 2007.

[47] J. P. Abrahams and A. G. W. Leslie, "Methods used in the structure determination

of bovine mitochondrial F1 ATPase," Acta Cryst., vol. D, no. 52, pp. 30-42,

1996.

[48] J. von Neumann, Functional Operators, vol. 2, Princeton: Princeton University

Press, 1950.

[49] H. H. Bauschke and J. M. Borwein, "On the convergence of von Neumann's

alternaing projection algorithm for two sets," Set-Valued Analysis, vol. 1, no. 2,

pp. 185-202, 1993.

150

[50] Elser, Viet, "Phase retrieval by iterated projections," J. Opt. Soc. Am. A, vol. 20,

no. 1, pp. 40-55, 2003.

[51] D. R. Luke, "Relaxed averaged alternating relfections for diffraction imaging,"

Inverse Problems, vol. 21, pp. 37-50, 2005.

[52] A. Levi and H. Stark, "Image restoration by the method of generalized projections

with application to restoration from magnitude," J. Opt. Soc. Am. A, vol. 1, pp.

932-943, 1984.

[53] M. Kohl, A. A. Minkevich and T. Baumback, "Improved success rate and stability

for phase retrieval by including randomized overrelaxation in the hybrid input-

output algorithm," Opt. Express, vol. 20, pp. 17093-17106, 2012.

[54] G. Liu, "Fourier phase retrieval algorithm with noise constraints," Signal

Processing, vol. 21, no. 4, pp. 339-347, 1990.

[55] A. V. Oppenhein and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed.,

Upper Saddle River: Prentice-Hall, 1999.

[56] J. R. Fienup and C. C. Wackerman, "Phase-retrieval stagnation problems and

solutions," J. Opt. Soc. Am. A, vol. 3, no. 11, pp. 1897-1907, 1986.

[57] S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells,

U. Weierstall and J. Spence, "X-ray image reconstruction from a diffraction

pattern alone," Physical Review B, vol. 68, no. 140101, 2003.

151

[58] I. Kodama, M. Yamaguchi, N. Ohyama, T. Honda, K. Shinohara, A. Ito, T.

Matsumura, K. Kinoshita and K. Yada, "Image reconstruction from an in-line

X-ray hologram," Optics communications, vol. 125, pp. 36-42, 1996.

[59] J. Zhao, D. Wang, F. Zhang and Y. Wang, "Hybrid phase retrieval approach for

reconstruction of in-line digital holograms without twin image," Opt. Eng., vol.

50, no. 9, 2011.

[60] J. S. Wu, U. Weierstall and J. Spence, "Iterative phase retrieval without support,"

Optics Letters, vol. 29, no. 23, pp. 2737-2739, 2004.

[61] J. R. Fienup and C. C. Wackerman, "Phase-retrieval stagnation problems and

solutions," Journal of the Optical Society of America, vol. 3, pp. 1897-1907,

1986.

[62] E. Gur, V. Sarafis, I. Falat, F. Vacha, M. Vacha and Z. Zalevsky, "“Super-

resolution via iterative phase retrieval for blurred and saturated biological

images," Opt. Express, vol. 16, pp. 7894-7903, 2008.

[63] R. Fernando, GPU Gems: Programming Techniques, Tips and Tricks for Real-

Time Graphics, Boston: Addison-Wesley Professional, 2004.

[64] M. Pharr and R. Fernando, GPU Gems 2: PRogramming Techniques for High-

Performance Graphics and General-Purpose Computation, Boston: Addison-

Wesley, 2005.

[65] P. S. Heckbert, "Survey of texture mapping," IEEE Comp. Graph. Appl., vol. 6, pp.

56-67, 1986.

152

[66] D. Shreiner, G. Sellers, J. M. Kessinish and B. M. Licea-Kane, OpenGL

Programming Guide, Boston: Addison=Wesley, 2013.

[67] A. R. Smith, "A pixel is not a little square," in Microsoft Technical Memo 6, 1995.

[68] E. Hartman and J. Keeler, "Layered neural networks with gaussian hidden units as

universal approximations," Neural Comput., vol. 2, pp. 210-215, 1990.

[69] M. Born and E. Wolf, Principles of Optics, 6th ed., Cambridge: Cambridge

University Press, 1997.

[70] N. M. Temme, Special functions: An introduction to the classical functions of

mathematical physics, New York: Wiley-Interscience, 1996.

[71] J. L. Elliot, Person, Zuluaga, Bosh, Adams, Brothers, Gulbis, Levine, Lockhart,

Zangari, Babcock, Dupre, Pasachoff, Souza, Rosing, Secrest, Bright, Dunham,

Sheppard, Kakkala, Tilleman, Berger, Briggs, Jacobson, Valleli, Volz,

Rapoport, Hart, Brucker, Michel, MAttingly, Zambrano-Marin, Meyer, Wolf,

Ryan, Ryan, Morzinsky, Grigsby, Brimacombe, Ragozzine, Montano and

Gilmore, "Size and albedo of Kuiper belt object 55636 from a stellar

occultation," Nature, vol. 465, p. 897–900, 2010.

[72] B. Sicardy, Bellucci, Gendron, Lacombe, LAcour, Lecacheux, Lellouch, Renner,

Pau, Roques, Widemann, Colas, Vachier, Vieira Martins, Ageorges, Jainaut,

Marco, Beisker, Hummel, Feinstein, Levato, Maury, Frappa, Gaillard,

Lavayssiere, Di Sora, Mallia, Masi, Behrend, Carrier, Mousis, Rousselot,

Alvarez-Candal, Lazzaro, Veiga, Andrei, Assafin, da Silva Neto, Jacques,

153

Pimentel, Weaver, Lecampion, Doncel, Momiyama and Tancredi, "Charon's

size and an upper limit on its atmosphere from a stellar occultation," Nature

439, vol. 439, pp. 52-54, 2006.

[73] B. Sicardy, Brahic, Ferrari, Gautier, Lecacheux, Lellouch, Roques, Arlot, colas,

Thuillot, Sevre, Vidal, Blanco, Cristaldi, Buil, Klotz and Thouvenot, "Probing

Titan's atmosphere by stellar occultation," Nature, vol. 343, pp. 350-353, 1990.

[74] H. E. Schlichting, E. O. Ofek, M. Wenz, R. Sari, A. Gal-Yam, M. Livio, E. Nelan

and S. Zucker, "A single sub-kilometre Kuiper belt object from a stellar

occultation in archival data," Nature, vol. 462, pp. 895-897, 2009.

[75] F. Rogues, Doressoundiram, Dhillon, Marsh, Bickerton, Kavelaars, Moncuquet,

Auvergne, Belskaya, Chevreton, Colas, Fernandez, Fitzsimmons, Lecacheux,

Mousis, Pau, Peixinho and Tozzi, "Exploration of the Kuiper Belt by High-

Precision Photometric Stellar Occultations: First Results," The Astronomical

Journal, vol. 132, no. 2, 2006.

[76] E. F. Young, "A Fourier optics method for calculating stellar occultation light

curves by objects with thin atmospheres," The Astronomical Journal, vol. 144,

no. 2, pp. 1-13, 2012.

[77] F. Roques, M. Moncuquet and B. Sicardy, "Stellar occultations by small bodies:

diffraction effects," The Astronomical Journal, vol. 93, no. 6, pp. 1549-1558,

1987.

154

[78] O. K. Ersoy, Diffraction, Fourier Optics and Imaging, Hoboken: Wiley-

Interscience, 2007.

[79] R. E. English and N. George, "Diffraction patterns in the shadows of disks and

obstacles," Applied optics, vol. 27, no. 8, pp. 1581-1587, 1988.

[80] D. Paganin, Coherent X-Ray Optics, Oxford: Oxford University Press, 2006.

[81] H. Altwaijry and D. Hyland, "Detection and characterization of near Earth

asteroids using stellar occultation," in AAS/AIAA Astrodynamics Specialist

Conference, Hilton Head, South Carolina, 2013.

[82] V. Laude, "Diffraction analysis of pixelated incoherent shadow casting," Optics

Communications, vol. 138, pp. 394-402, 1997.

[83] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, New

York: Dover, 1972, pp. 300-302.

[84] F. L. Pedrotti, L. M. Pedrotti and L. S. Pedrotti, Introduction to Optics, 3rd ed.,

Harlow: Pearson, 2014.

[85] "JAXA," [Online]. Available:

http://www.isas.jaxa.jp/j/snews/2005/1101_hayabusa.shtml. [Accessed 2014].

[86] R. H. Brown and R. Q. Twiss, "A new type of interferometer for use in radio

astronomy," Nature, vol. 178, no. 4541, pp. 1046-1048, 1956.

[87] R. H. Brown, "Stellar Interferometer at Narrabri Observatory," Nature, vol. 218,

pp. 637-641, 1968.

155

[88] D. Dravins, S. LeBohec, H. Jensen and P. Nunez, "Optical intensity interferometry

with the Cherenkov Telescope Array," Astroparticle Physics, vol. 43, pp. 331-

347, March 2013.

156

APPENDIX I – 2D PROJECTION MATLAB CODE

The following Matlab (2013) functions generate a two-dimensional visualization of

several phase retrieval methods. It includes the code to produce the plots shown

previously.

ProjectionPhaseRetrieval.m

clear

global mode;

global a b;

global C1 C2 R;

%%

% The type of case to run

% Mode 1 is the intersection of two lines

% Mode 2 has a line S domain and non-convex modulus domain

% Mode 3 has a line S domain > 0 and a non-convex modulus domain

mode = 1;

% The number of iterations to perform

iterations = 75;

% The maximum relaxation value reached

MaxLambda = 0.9;

% The iteration to start increasing the relaxation parameter

RelaxationStartIteration = 20;

% The iteration to finish increasing the relaxation parameter

RelaxationFinishIteration = 50;

% The parameter for methods such as the HIO

beta = 0.9;

% Slope of the modulus line for mode 1

a = 0.4;

b = 0;

% Position of the center of the modulus constraint circles for mode 2 and 3

C1 = [0.5, -0.8];

%C1 = [0.5, -1.25];

C1 = [0.5, -1.35];

C2 = [C1(1)+cos(0.25)*R*2, C1(2)-sin(0.25)*R*2, 0.5];

% Radius of the modulus constraint circles for mode 2 and 3

R = 1.25;

% The initial image position

g0 = [2.5, 0.0];

%g0 = [1.0, 0.0];

% Whether to show the error subplot

ShowError = 1;

157

% The width of the lines on the plot

LineWidth = 2;

%% Define the image projection operators

if mode == 3

 Ps = @(p) [p(:,1), p(:,2)*0] .* [heaviside(p(:,1)) 1];

 Rs = @(p) (2*Ps(p) - p) .* [heaviside(p(:,1)) 1];

else

 Ps = @(p) [p(:,1), p(:,2)*0];

 Rs = @(p) (2*Ps(p) - p);

end

%% Find the intersection point

if mode == 1

 Intersection = [0 0];

elseif mode == 2 || mode == 3

 if C1(2) + R > 0

 Angle = asin(-C1(2)/R)

 Intersection(1) = C1(1) + R*cos(Angle);

 else

 Intersection(1) = C1(1);

 end

 Intersection(2) = 0;

end

%% Allocate memory and parameters for plotting

dist = [];

p = [];

colors = [0 0.5 0; 0 0.9 0; 0 1 1; 1 0 1; 0.75 1 0; 1 0.5 0; 0.5 0 1;];

colors = [colors; colors];

algs = {'ER', 'SF', 'HIO', 'DM', 'ASR', 'HPR', 'RAAR'};

%% Plot domains

figure(1)

if ShowError

 subaxis(2,1,1, 'Spacing', 0.03, 'PaddingTop', 0.01, 'PaddingLeft', 0.075,

'PaddingRight', 0.075, 'PaddingBottom', 0.025, 'Margin', 0);

else

 subaxis(1,1,1, 'Spacing', 0.03, 'PaddingTop', 0.01, 'PaddingLeft', 0.075,

'PaddingRight', 0.075, 'PaddingBottom', 0.025, 'Margin', 0);

end

cla

hold on

if mode == 1

 plot(-2:0.1:3, a*(-2:0.1:3)+b, 'k-' ,'LineWidth', 2)

 text(2.8,1.3,'M','FontSize',12,'Color','k')

 plot(-(2*(mode~=3)):0.1:3, 0*(-(2*(mode~=3)):0.1:3), 'r-' ,'LineWidth', 2)

 text(2.8,0.15,'S','FontSize',12,'Color','r')

 grid on

else

 theta = -0.185:0.01:1.98;

 plot(cos(theta)*R+C1(1), sin(theta)*R+C1(2), 'k-' ,'LineWidth', 2)

 theta = 0.45:0.01:2.8;

 plot(cos(theta)*R+C2(1), sin(theta)*R+C2(2), 'k-' ,'LineWidth', 2)

 text(2.1,-0.8,'M','FontSize',12,'Color','k')

 plot(-(1*(mode~=3)):0.1:4, 0*(-(1*(mode~=3)):0.1:4), 'r-' ,'LineWidth', 2)

 text(3.8,0.25,'S','FontSize',12,'Color','r')

 grid on

end

zlabel('Iteration')

box on

158

set(gcf,'Color',[1 1 1])

text(g0(1)-0.01,g0(2)-0.15,['g_0'],'FontSize',10)

if mode == 1

 set(gca, 'XTick', -20:30);

 set(gca, 'YTick', -20:20);

 axis([-2 3 -2 2])

 set(gcf,'Position',[0 0 700 400])

else

 set(gca, 'XTick', -10:10);

 set(gca, 'YTick', -10:10);

 axis([-1 4 -1 5])

 set(gcf,'Position',[0 0 700 800])

end

xlabel('a) Algorithm Trajectories')

%% Compute trajectories

for j=1:length(algs)

 alg = algs(j);

 g = g0;

 for i=1:iterations

 g2 = g(end,:);

 % Compute the current relaxation parameter

 if i > RelaxationFinishIteration

 lambda = MaxLambda;

 elseif i > RelaxationStartIteration

 lambda = MaxLambda * (i-RelaxationStartIteration) /

(RelaxationFinishIteration - RelaxationStartIteration);

 else

 lambda = 0;

 end

 % Perform the projections for the current algorithm

 if strcmp(alg, 'ER')

 g(end+1,:) = Ps(Pm(g2, lambda));

 elseif strcmp(alg, 'SF')

 g(end+1,:) = Rs(Pm(g2, lambda));

 elseif strcmp(alg, 'HIO')

 temp1 = [g2; Pm(g2, lambda); Ps(Pm(g2, lambda))];

 temp2 = [g2; Pm(g2, lambda)];

 temp3 = g2 - beta*Pm(g2, lambda);

 temp2(end+1,:) = [temp3(1) temp2(end,2)];

 temp2(end+1,:) = [temp3(1) temp3(2)];

 g(end+1,:) = [temp1(end,1) temp2(end,2)];

% Uncomment to show the intermediate steps of the HIO

% if i < 6

% plot(temp1(:,1), temp1(:,2),'k-','LineWidth', 1)

% plot(temp2(:,1), temp2(:,2),'k-','LineWidth', 1)

%

% plot(temp1(end,1), temp1(end,2),'k x','MarkerSize', 10)

% plot(temp2(end,1), temp2(end,2),'k x','MarkerSize', 10)

%

% plot([temp1(end,1) temp1(end,1)], [temp1(end,2)

temp2(end,2)],'LineStyle',':')

% plot([temp2(end,1) temp1(end,1)], [temp2(end,2)

temp2(end,2)],'LineStyle',':')

% end

 elseif strcmp(alg, 'DM')

 lambda = min(lambda, 0.2 + i/100);

 gs = beta^-1;

159

 gm = -beta^-1;

 g(end+1,:) = g2 + beta*Ps((1+gs)*Pm(g2, lambda)-gs*g2) - beta*Pm(

(1+gm)*Ps(g2)-gm*g2, lambda);

 elseif strcmp(alg, 'ASR')

 g(end+1,:) = 1/2* (Rs(Rm(g2, lambda))+g2);

 elseif strcmp(alg, 'HPR')

 g(end+1,:) = (Rs(Rm(g2, lambda) + (beta-1)*Pm(g2, lambda)) + g(end,:) + (1-

beta)*Pm(g2, lambda))/2;

 elseif strcmp(alg, 'RAAR')

 g(end+1,:) = 1/2*beta*(Rs(Rm(g2, lambda))+g2) + (1-beta)*Pm(g2, lambda);

 elseif strcmp(alg, 'LS')

 lambda2 = 0.9;

 lambda2 = min(0.9, 0.2 + i/100);

 if i==1

 g(end+1,:) = Ps(Pm(g2, 0));

 else

 Pm_relaxed = (1-lambda2)*g(end-1,:) + lambda2*g(end,:);

 g(end+1,:) = Ps(Pm_relaxed);

 end

 end

 end

 % Plot the path of the algorithm with the correct color and line style

 if strcmp(algs{j}, 'HPR') || j > 7

 p(end+1) = plot3(g(:,1),g(:,2),0:iterations,'k-.','LineWidth',

LineWidth,'Color',colors(j,:));

 else

 p(end+1) = plot3(g(:,1),g(:,2),0:iterations,'k-','LineWidth',

LineWidth,'Color',colors(j,:));

 end

 plot3(g(1:1:end,1),g(1:1:end,2),0:iterations,'k .','MarkerSize',

15,'Color',colors(j,:))

 % Compute distance to the global intersection or minimum

 dist(end+1,:) = sqrt((g(:,1) - Intersection(1)).^2 + g(:,2).^2);

end

legend('boxoff')

legend(p, algs{1}, algs{2}, algs{3}, algs{4}, algs{5}, algs{6}, algs{7},

'Location','NorthEastOutside')

%% Plot error for each algorithm

if ShowError

 subaxis(2,1,2, 'Spacing', 0.03, 'PaddingTop', 0.01, 'PaddingLeft', 0.075,

'PaddingRight', 0.075, 'PaddingBottom', 0.075, 'Margin', 0);

 cla

 hold on

 for j=1:length(algs)

 if strcmp(algs{j}, 'HPR') || j > 7

 semilogy(dist(j,:)','k-.','LineWidth', 2, 'Color', colors(j,:))

 else

 semilogy(dist(j,:)','LineWidth', 2, 'Color', colors(j,:))

 end

 end

 xlim([0 iterations])

 xlabel(sprintf('Iteration\nb) Distance from the global minimum.'))

 ylabel('Error')

 set(gcf,'Position',[0 0 700 800])

end

160

Pm.m

function [P] = Pm(p, lambda)

global mode;

global a b;

global C1 C2 R;

if mode == 1

 P = [(p(:,1)+(p(:,2)-b)*a)/(1+a^2), ((p(:,1)+(p(:,2)-b)*a)/(1+a^2))*a + b];

elseif mode == 2 || mode == 3

 dist1 = sqrt((p(1)-C1(1))^2 + (p(2)-C1(2))^2);

 dist2 = sqrt((p(1)-C2(1))^2 + (p(2)-C2(2))^2);

 if dist1 <= dist2

 angle = atan2(p(2)-C1(2), p(1)-C1(1));

 P = [cos(angle)*R+C1(1), sin(angle)*R+C1(2)];

 else

 angle = atan2(p(2)-C2(2), p(1)-C2(1));

 P = [cos(angle)*R+C2(1), sin(angle)*R+C2(2)];

 end

end

P = (1-lambda)*P + lambda*p;

end

Rm.m

function [P] = Rm(p, lambda)

P = 2*Pm(p, lambda) - p;

end

subaxis.m

function h=subaxis(varargin)

%SUBAXIS Create axes in tiled positions. (just like subplot)

% Usage:

% h=subaxis(rows,cols,cellno[,settings])

% h=subaxis(rows,cols,cellx,celly[,settings])

% h=subaxis(rows,cols,cellx,celly,spanx,spany[,settings])

%

% SETTINGS: Spacing,SpacingHoriz,SpacingVert

% Padding,PaddingRight,PaddingLeft,PaddingTop,PaddingBottom

% Margin,MarginRight,MarginLeft,MarginTop,MarginBottom

% Holdaxis

%

% all units are relative (e.g from 0 to 1)

%

% Abbreviations of parameters can be used.. (Eg MR instead of MarginRight)

% (holdaxis means that it wont delete any axes below.)

%

%

% Example:

%

% >> subaxis(2,1,1,'SpacingVert',0,'MR',0);

% >> imagesc(magic(3))

% >> subaxis(2,'p',.02);

% >> imagesc(magic(4))

161

%

% 2001 / Aslak Grinsted (Feel free to modify this code.)

f=gcf;

Args=[];

UserDataArgsOK=0;

Args=get(f,'UserData');

if isstruct(Args)

UserDataArgsOK=isfield(Args,'SpacingHorizontal')&isfield(Args,'Holdaxis')&isfield(Args,'r

ows')&isfield(Args,'cols');

end

OKToStoreArgs=isempty(Args)|UserDataArgsOK;

if isempty(Args)&(~UserDataArgsOK)

 Args=struct('Holdaxis',0, ...

 'SpacingVertical',0.05,'SpacingHorizontal',0.05, ...

 'PaddingLeft',0,'PaddingRight',0,'PaddingTop',0,'PaddingBottom',0, ...

 'MarginLeft',.1,'MarginRight',.1,'MarginTop',.1,'MarginBottom',.1, ...

 'rows',[],'cols',[]);

end

Args=parseArgs(varargin,Args,{'Holdaxis'},{'Spacing' {'sh','sv'}; 'Padding'

{'pl','pr','pt','pb'}; 'Margin' {'ml','mr','mt','mb'}});

if (length(Args.NumericArguments)>1)

 Args.rows=Args.NumericArguments{1};

 Args.cols=Args.NumericArguments{2};

%remove these 2 numerical arguments

 Args.NumericArguments={Args.NumericArguments{3:end}};

end

if OKToStoreArgs

 set(f,'UserData',Args);

end

switch length(Args.NumericArguments)

 case 0

 return % no arguments but rows/cols....

 case 1

 x1=mod((Args.NumericArguments{1}-1),Args.cols)+1; x2=x1;

 y1=floor((Args.NumericArguments{1}-1)/Args.cols)+1; y2=y1;

 case 2

 x1=Args.NumericArguments{1};x2=x1;

 y1=Args.NumericArguments{2};y2=y1;

 case 4

 x1=Args.NumericArguments{1};x2=x1+Args.NumericArguments{3}-1;

 y1=Args.NumericArguments{2};y2=y1+Args.NumericArguments{4}-1;

 otherwise

 error('subaxis argument error')

end

cellwidth=((1-Args.MarginLeft-Args.MarginRight)-(Args.cols-

1)*Args.SpacingHorizontal)/Args.cols;

cellheight=((1-Args.MarginTop-Args.MarginBottom)-(Args.rows-

1)*Args.SpacingVertical)/Args.rows;

xpos1=Args.MarginLeft+Args.PaddingLeft+cellwidth*(x1-1)+Args.SpacingHorizontal*(x1-1);

xpos2=Args.MarginLeft-Args.PaddingRight+cellwidth*x2+Args.SpacingHorizontal*(x2-1);

ypos1=Args.MarginTop+Args.PaddingTop+cellheight*(y1-1)+Args.SpacingVertical*(y1-1);

ypos2=Args.MarginTop-Args.PaddingBottom+cellheight*y2+Args.SpacingVertical*(y2-1);

if Args.Holdaxis

 h=axes('position',[xpos1 1-ypos2 xpos2-xpos1 ypos2-ypos1]);

else

 h=subplot('position',[xpos1 1-ypos2 xpos2-xpos1 ypos2-ypos1]);

end

set(h,'box','on');

162

set(h,'units',get(gcf,'defaultaxesunits'));

set(h,'tag','subaxis');

if (nargout==0) clear h; end;

parseArgs.m

function ArgStruct=parseArgs(args,ArgStruct,varargin)

% Helper function for parsing varargin.

%

% ArgStruct=parseArgs(varargin,ArgStruct[,FlagtypeParams[,Aliases]])

%

% * ArgStruct is the structure full of named arguments with default values.

% * Flagtype params is params that don't require a value. (the value will be set to 1 if

it is present)

% * Aliases can be used to map one argument-name to several argstruct fields

%

% example usage:

% --------------

% function parseargtest(varargin)

%

% %define the acceptable named arguments and assign default values

% Args=struct('Holdaxis',0, ...

% 'SpacingVertical',0.05,'SpacingHorizontal',0.05, ...

% 'PaddingLeft',0,'PaddingRight',0,'PaddingTop',0,'PaddingBottom',0, ...

% 'MarginLeft',.1,'MarginRight',.1,'MarginTop',.1,'MarginBottom',.1, ...

% 'rows',[],'cols',[]);

%

% %The capital letters define abrreviations.

% % Eg. parseargtest('spacingvertical',0) is equivalent to parseargtest('sv',0)

%

% Args=parseArgs(varargin,Args, ... % fill the arg-struct with values entered by the user

% {'Holdaxis'}, ... %this argument has no value (flag-type)

% {'Spacing' {'sh','sv'}; 'Padding' {'pl','pr','pt','pb'}; 'Margin'

{'ml','mr','mt','mb'}});

%

% disp(Args)

%

% % Aslak Grinsted 2003

Aliases={};

FlagTypeParams='';

if (length(varargin)>0)

 FlagTypeParams=strvcat(varargin{1});

 if length(varargin)>1

 Aliases=varargin{2};

 end

end

%---------------Get "numeric" arguments

NumArgCount=1;

while (NumArgCount<=size(args,2))&(~ischar(args{NumArgCount}))

 NumArgCount=NumArgCount+1;

end

NumArgCount=NumArgCount-1;

if (NumArgCount>0)

 ArgStruct.NumericArguments={args{1:NumArgCount}};

else

 ArgStruct.NumericArguments={};

end

%--------------Make an accepted fieldname matrix (case insensitive)

Fnames=fieldnames(ArgStruct);

for i=1:length(Fnames)

163

 name=lower(Fnames{i,1});

 Fnames{i,2}=name; %col2=lower

 AbbrevIdx=find(Fnames{i,1}~=name);

 Fnames{i,3}=[name(AbbrevIdx) ' ']; %col3=abreviation letters (those that are

uppercase in the ArgStruct) e.g. SpacingHoriz->sh

 %the space prevents strvcat from removing empty lines

 Fnames{i,4}=isempty(strmatch(Fnames{i,2},FlagTypeParams)); %Does this parameter have

a value? (e.g. not flagtype)

end

FnamesFull=strvcat(Fnames{:,2});

FnamesAbbr=strvcat(Fnames{:,3});

if length(Aliases)>0

 for i=1:length(Aliases)

 name=lower(Aliases{i,1});

 FieldIdx=strmatch(name,FnamesAbbr,'exact'); %try abbreviations (must be exact)

 if isempty(FieldIdx)

 FieldIdx=strmatch(name,FnamesFull); %&??????? exact or not?

 end

 Aliases{i,2}=FieldIdx;

 AbbrevIdx=find(Aliases{i,1}~=name);

 Aliases{i,3}=[name(AbbrevIdx) ' ']; %the space prevents strvcat from removing

empty lines

 Aliases{i,1}=name; %dont need the name in uppercase anymore for aliases

 end

 %Append aliases to the end of FnamesFull and FnamesAbbr

 FnamesFull=strvcat(FnamesFull,strvcat(Aliases{:,1}));

 FnamesAbbr=strvcat(FnamesAbbr,strvcat(Aliases{:,3}));

end

%--------------get parameters--------------------

l=NumArgCount+1;

while (l<=length(args))

 a=args{l};

 if ischar(a)

 paramHasValue=1; % assume that the parameter has is of type 'param',value

 a=lower(a);

 FieldIdx=strmatch(a,FnamesAbbr,'exact'); %try abbreviations (must be exact)

 if isempty(FieldIdx)

 FieldIdx=strmatch(a,FnamesFull);

 end

 if (length(FieldIdx)>1) %shortest fieldname should win

 [mx,mxi]=max(sum(FnamesFull(FieldIdx,:)==' ',2));

 FieldIdx=FieldIdx(mxi);

 end

 if FieldIdx>length(Fnames) %then it's an alias type.

 FieldIdx=Aliases{FieldIdx-length(Fnames),2};

 end

 if isempty(FieldIdx)

 error(['Unknown named parameter: ' a])

 end

 for curField=FieldIdx' %if it is an alias it could be more than one.

 if (Fnames{curField,4})

 val=args{l+1};

 else

 val=1; %parameter is of flag type and is set (1=true)....

 end

 ArgStruct.(Fnames{curField,1})=val;

 end

 l=l+1+Fnames{FieldIdx(1),4}; %if a wildcard matches more than one

 else

 error(['Expected a named parameter: ' num2str(a)])

 end

end

164

APPENDIX II – GAUSSIAN PHASE RETRIEVAL

The following Matlab (2013) code generates a Gaussian basis image, computes its Fourier

transform, and performs the phase retrieval algorithm on the Fourier transform data.

GaussianPhaseRetrieval.m

clear

close all

%% Parameters

DoRetrieval = 1;

ImageRes = 512;

FTRes = 1024;

FTRes_Low = 256;

FTExtent = 0.5;

%% True Image

% Pieades Example

Input = [...

 2 ,105, 290;...

 3 ,220, 275;...

 2 ,298, 324;...

 2 ,397, 275;...

 2.5,336, 199;...

 2.5,380, 170;...

 1 ,405, 215;...

 1 ,333, 143;...

 1 ,100, 265;...

];

% Diamond Example

Input = [...

 2 ,300, 200;...

 2 ,175, 250;...

 2 ,350, 250;...

 2 ,300, 300];

Input(:,2) = Input(:,2) - mean(Input(:,2)) + ImageRes/2;

Input(:,3) = Input(:,3) - mean(Input(:,3)) + ImageRes/2;

N_Thetas = size(Input,1);

Input = Input + [zeros(N_Thetas,1) ones(N_Thetas,1)*50 ones(N_Thetas,1)*50];

%% Generate sampled data from continuous image

% Generate a sampled image from the true image

TrueImage = MakeImageFromGaussians(Input, ImageRes);

% Generate a sampled Fourier transform from the true Fourier transform

TrueFT = MakeFTofGaussians(Input, FTRes, FTExtent);

%% Find local maxima of frequency spectrum

165

disp('Starting finding Delta Thetas...')

% Generate the spectrum of the sampled Fourier transform

TrueMagSpect = abs(fftshift(fft2(abs(TrueFT).^2)));

% Find maxima in spectrum and store the locations and heights

RawEst_DeltaTheta2 = [];

blocksize = 5;

tic

for i = 1+blocksize:(FTRes-blocksize)

 for j=1+blocksize:(FTRes-blocksize)

 if max(max(TrueMagSpect(j-blocksize:j+blocksize,i-blocksize:i+blocksize))) ==

TrueMagSpect(j,i)

 RawEst_DeltaTheta2(end+1, :) = [i j TrueMagSpect(j,i)];

 end

 end

end

% Sort maxima by their amplitude

RawEst_DeltaTheta2 = sortrows(RawEst_DeltaTheta2, -3);

% Remove trivial Gaussian at origin

RawEst_DeltaTheta2(1,:) = [];

% Only keep the n*(n-1) largest Gaussians

RawEst_DeltaTheta2 = RawEst_DeltaTheta2(1:N_Thetas*(N_Thetas-1),1:3);

% Translate into center of field of view

RawEst_DeltaTheta2(:,1) = RawEst_DeltaTheta2(:,1) - (FTRes)/2-1;

RawEst_DeltaTheta2(:,2) = -RawEst_DeltaTheta2(:,2) + (FTRes)/2+1;

% Copy positions only

RawEst_DeltaTheta = RawEst_DeltaTheta2(1:2:end,1:2);

Est_N_Thetas = N_Thetas;

disp('Finished finding Delta Thetas')

%% Determine thetas from delta thetas

if DoRetrieval

 disp('Starting Solver...')

 tic

 % Solve for the estmated Gaussian locations

 [Est_Theta, Est_DeltaTheta, Est_Error] = FindPairs(RawEst_DeltaTheta, Est_N_Thetas)

 % Translate image to center

 Est_Theta(:,1) = Est_Theta(:,1) - mean(Est_Theta(:,1)) + ImageRes/2;

 Est_Theta(:,2) = Est_Theta(:,2) - mean(Est_Theta(:,2)) + ImageRes/2;

 % Create sampled versions of the estimated image and FT

 EstImage = MakeImageFromGaussians([ones(Est_N_Thetas,1)*3 Est_Theta], ImageRes);

 EstImageFT = single(MakeFTofGaussians([ones(Est_N_Thetas,1) Est_Theta], FTRes,

FTExtent));

 toc

 % Plot estimated image

 EstImage = fliplr(EstImage);

 figure(4)

 image(1:ImageRes, 1:ImageRes, EstImage / max(max(abs(EstImage))) * 64)

 title('Estimated Image')

 colormap gray

 disp('Solver Finished')

end

%% Output

166

figure(1)

image(TrueImage / max(max(abs(TrueImage))) * 64)

title('True Image')

colormap gray

figure(2)

image(1:ImageRes, 1:ImageRes, (abs(TrueFT) / max(max(abs(TrueFT)))).^0.5 * 64)

title('True Image FT')

colormap gray

figure(3)

image((TrueMagSpect/max(max(abs(TrueMagSpect)))*64).^1.5*4)

title('FT Mag Spectrum')

colormap gray

MakeFTofGaussians.m

function [FT] = MakeFTofGaussians(Gaussians, FTRes, FTExtent)

N_Gaussians = size(Gaussians,1);

FT = zeros(FTRes, FTRes);

[U, V] = meshgrid(linspace(-FTExtent,FTExtent,FTRes),linspace(-FTExtent,FTExtent,FTRes));

for g=1:N_Gaussians

 FT = FT + exp(-2*pi*1i*(Gaussians(g,2)*U + Gaussians(g,3)*V)) .*

2*Gaussians(g,1)^2*pi .* exp(-2*Gaussians(g,1)^2*pi^2*(U.^2+V.^2));

end

end

MakeImageFromGaussians.m

function [Image] = MakeImageFromGaussians(Gaussians, ImageRes)

N_Gaussians = size(Gaussians,1);

Image = zeros(ImageRes,ImageRes);

[x, y] = meshgrid(linspace(1,ImageRes,ImageRes),linspace(1,ImageRes,ImageRes));

for g=1:N_Gaussians

 Image = Image + exp(-((x - Gaussians(g,2)).^2 + (y -

Gaussians(g,3)).^2)./(2*Gaussians(g,1)^2));

end

end

FindPairs.m

function [Est_Theta, Est_DeltaTheta, Est_Error] = FindPairs(RawEst_DeltaTheta,

Est_N_Thetas)

RawEst_DeltaTheta = [0,0; RawEst_DeltaTheta; -RawEst_DeltaTheta];

N_DeltaThetas = length(RawEst_DeltaTheta);

MainImageIndices = 3:N_DeltaThetas;

%% Find initial increments

Increment = RawEst_DeltaTheta(2,:) - RawEst_DeltaTheta(1,:);

Indices = [];

167

for i=1:N_DeltaThetas

 for j=1:N_DeltaThetas

 TestIncrement = RawEst_DeltaTheta(j,:) - RawEst_DeltaTheta(i,:);

 %abs(TestIncrement - Increment)

 if(max(abs(TestIncrement - Increment)) <= 5)

 Indices(end+1,:) = [i j];

 end

 end

end

%% Recursively loop through next increments

[Success, Indices] = NextIndex(MainImageIndices, RawEst_DeltaTheta, Indices,

N_DeltaThetas, Est_N_Thetas);

%% Output

Est_Theta = RawEst_DeltaTheta(Indices(1,:),:);

Est_DeltaTheta = 0;

Est_Error = 0;

end

function [Success, Indices] = NextIndex(MainImageIndices, RawEst_DeltaTheta, Indices,

N_DeltaThetas, Est_N_Thetas)

Indices = [Indices zeros(size(Indices,1), 1)];

Success = 0;

for AttempedIndex = MainImageIndices

 Increment = RawEst_DeltaTheta(AttempedIndex,:) - RawEst_DeltaTheta(Indices(1,end-

1),:);

 Indices(:,end) = 0;

 for i=1:size(Indices,1)

 for j=1:N_DeltaThetas

 TestIncrement = RawEst_DeltaTheta(j,:) - RawEst_DeltaTheta(Indices(i,end-

1),:);

 if(TestIncrement(1) == Increment(1) && TestIncrement(2) == Increment(2))

 Indices(i,end) = j;

 end

 end

 end

 if sum(Indices(:,end)>0) >= Est_N_Thetas

 Success = 1;

 if size(Indices,2) < Est_N_Thetas

 [Success2, Indices2] = NextIndex(MainImageIndices(MainImageIndices ~=

AttempedIndex), RawEst_DeltaTheta, Indices(Indices(:,end) ~= 0, :), N_DeltaThetas,

Est_N_Thetas);

 if Success2

 Success = 1;

 Indices = Indices2;

 else

 Success = 0;

 end

 else

 end

 if Success

168

 break;

 else

 % Subsequent iteration failed, this maxima was incorrect

 end

 end

end

end

169

APPENDIX III – OCCULTATION PHASE RETRIEVAL

The following Matlab (2013) functions use a black and white bitmap image as the

silhouette for an asteroid and produces a shadow pattern based on the specified parameters.

The solver then attempts to recover the silhouette from the shadow pattern. The code

includes the functionality to produce plots of each step of the process. The code here uses

the helper functions in Appendix I for plotting. Included below are functions to compute

Fresnel integrals. The function generateTables.m must be called before using the Fresnel

integral functions. Included after the code are three bitmaps of the silhouette of Itokawa

at 32x32, 64x64 and 128x128 resolutions.

OccultationPhaseRetrieval.m

%% Occultation Phase Retrieval

clear

clc

% Start a matlab pool to use multipls cores and parfor loops

if(matlabpool('size') < 2)

 matlabpool

end

%% Paramters

% true or false if should perform retrieval otherwise just shows the shadow pattern

DoRetrieval = 1;

% The maximum number of retrieval iterations

Iterations = 3;

% Whether to randomly pick a second pixel to test at each iteration

RandomlyTestSecondPixel = 0;

% Plot options

ShowTrueShadowPattern = 1;

ShowNoisyShadowPattern = 1;

ShowSensorData = 0;

ShowSensorPattern = 0;

ShowErrorHistory = 0;

ShowTrueErrorHistory = 0;

ShowCurrentIteration = 1;

% The number of apertures, use inf for unrestricted data

NSensors = inf;

% The angle from vertical of the sensor paths

SensorPatternAngle = 0.05; % [rad]

170

% The standard deviation of the error in the position of the sensors

SensorPositionErrorStdDev = 0; % [meters]

% Resolution of the image of the silhouette

ImgRes = 32; % [pixels]

% Resolution of the shadow pattern

IntRes = 128; % [pixels]

% SNR of the intensity measurements

IntensitySNR = 10;

% Light wavelength

lambda = 5.5e-7; % [meters]

% The filename of the image used to create the shadow pattern

ImageFilename = ['Itokawa' num2str(ImgRes) '.bmp'];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Enter range to the asteroid

z = 1.00 * 149597871000; % [meters] (### * 1[au in meters])

F = (535/2)^2/z/lambda;

%%%%%%%%%%%%%% or %%%%%%%%%%%%%%

% Enter Fresnel Number

%F = 0.87;

%z = (535/2)^2/lambda/F;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

zl = z/lambda;

%% Compute dimensional data and allocate memory

% Compute the standard deviation of the noise based on the SNR

if IntensitySNR == inf

 noise_stddev = 0;

else

 noise_stddev = fzero(@(sigma) IntensitySNR - 1/(2*sigma*sqrt(1+2*sigma^2)),0.1)

end

ViewSize = 535/(80/128); % [m]

PixSize = 535/(80/128*ImgRes); % [m]

AngRes = PixSize / z; % [rad]

AngView = AngRes * ImgRes; % [rad]

ImgExtent = ViewSize / 2 / z; % [rad]

IntExtent = 1000 / z; % [m/z]

AngRes_AS = AngRes * 180/pi*60*60; % [arcsec]

AngView_AS = AngView * 180/pi*60*60; % [arcsec]

E = @(x)(fresnelS(x)+1i*fresnelC(x));

ImgPixelSize = ImgExtent*2/(ImgRes-1);

IntPixelSize = IntExtent*2/(IntRes-1);

[X,Y] = meshgrid(-ImgExtent:ImgPixelSize:ImgExtent,-ImgExtent:ImgPixelSize:ImgExtent);

[U,V] = meshgrid(-IntExtent:IntPixelSize:IntExtent,-IntExtent:IntPixelSize:IntExtent);

Js = zeros(size(U,2), size(U,1), ImgRes, ImgRes);

%% Generate Image

Img = mean(imread(ImageFilename),3)/255;

%% Generate diffraction pattern for every pixel as if they're all lit.

tic

disp('Starting generating pixel contributions to shadow pattern...')

parfor i = 1:ImgRes

 for j = 1:ImgRes

 Js(:,:,i,j) = 1/2* (...

 E(sqrt(2*zl)*(ImgPixelSize + X(i,j) - U)) -...

 E(sqrt(2*zl)*(+ X(i,j) - U)) ...

) .* (...

 E(sqrt(2*zl)*(ImgPixelSize + Y(i,j) - V)) -...

171

 E(sqrt(2*zl)*(+ Y(i,j) - V)) ...

);

 end

end

disp('Finished generating pixel contributions to shadow pattern.')

toc

%% Generate true diffraction pattern for image using pixel contributions.

J = 1i - squeeze(sum(Js(:,:,~logical(Img)),3));

Psi = abs(J).^2;

Psi2 = abs(Psi + (randn(size(Psi)) + 1i*randn(size(Psi)))*noise_stddev);

% Plots

figure(1)

colormap gray

image(X(1,:)*180/pi*60*60,Y(:,1)*180/pi*60*60,Img*64)

title('True Image: \Gamma(x_a,y_a)')

xlabel('\theta_x [arcsec]')

ylabel('\theta_y [arcsec]')

if ShowTrueShadowPattern

 if 0

 figure(2)

 subaxis(1,1,1, 'Spacing', 0.02, 'PaddingTop', 0.08, 'PaddingLeft', 0.13,

'PaddingRight', 0.3, 'PaddingBottom', 0.12, 'Margin', 0);

 colormap gray

 image(U(1,:)*z,V(:,1)*z,Psi / max(max(Psi))*64)

 title(sprintf('z = %.2f [au], F = %.2f',z/149597871000,F),'FontSize',15)

 xlabel('X [m]','FontSize',15)

 ylabel('Y [m]','FontSize',15)

 subaxis(1,1,1, 'Spacing', 0.02, 'PaddingTop', 0.08, 'PaddingLeft', 0.82,

'PaddingRight', 0.15, 'PaddingBottom', 0.12, 'Margin', 0);

 plot([0 0], [eps z/149597871000],'b-','LineWidth',10,'Color',[60/255 0 0])

 ylim([0.008 50])

 ylabel('z [au]','FontSize',15)

 set(gca, 'YScale', 'log')

 set(gca, 'XTick', []);

 set(gca, 'YTick', [0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50]);

 set(gca, 'YMinorTick', 'off');

 subaxis(1,1,1, 'Spacing', 0.02, 'PaddingTop', 0.08, 'PaddingLeft', 0.96,

'PaddingRight', 0.01, 'PaddingBottom', 0.12, 'Margin', 0);

 plot([0 0], [eps F],'b-','LineWidth',10,'Color',[60/255 0 0])

 ylim([0.008 100])

 ylabel('F','FontSize',15)

 set(gca, 'YScale', 'log')

 set(gca, 'XTick', []);

 set(gca, 'YTick', [0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100]);

 set(gca, 'YMinorTick', 'off');

 temp = get(gcf,'PaperPosition')

 set(gcf,'PaperPosition', [0 0 10.66666666666 6])

 print(gcf, '-dpng', ['F' sprintf('%07.3f',F) '.png']);

 else

 figure(2)

 colormap gray

 image(U(1,:)*z,V(:,1)*z,Psi / max(max(Psi))*64)

 xlabel('X [m]')

 ylabel('Y [m]')

 title('True Shadow Pattern')

 end

end

if ShowNoisyShadowPattern

172

 figure(3)

 colormap gray

 image(U(1,:)*z,V(:,1)*z,Psi2 / max(max(Psi2))*64)

 title(['Noisy Shadow Pattern'])

 xlabel('X [m]')

 ylabel('Y [m]')

end

if NSensors == inf

 SensorPattern = ones(IntRes, IntRes);

 SensorPatternPix = [];

 for x = 1:IntRes

 for y = 1:IntRes

 SensorPatternPix(end+1,:) = [((x-1)*IntRes) + y, ((x-1)*IntRes) + y];

 end

 end

else

 SensorPattern = zeros(IntRes, IntRes);

 SensorPatternPix = [];

 for i=0:NSensors-1

 MidPos = IntRes/2 + (i-NSensors/2+0.5)/NSensors*2*IntRes/2 * 0.75;

 MidPosEr = IntRes/2 + (i-NSensors/2+0.5)/NSensors*2*IntRes/2 * 0.75 + randn(1) *

IntRes / (IntExtent*2*z) * SensorPositionErrorStdDev;

 for y=1:IntRes

 x = round(MidPos + sin(SensorPatternAngle) * (y-IntRes/2));

 xEr = round(MidPosEr + sin(SensorPatternAngle) * (y-IntRes/2));

 if x <= IntRes && x > 0 && y <= IntRes && y > 0 && xEr <= IntRes && xEr > 0

 SensorPatternPix(end+1,:) = [((x-1)*IntRes) + y, ((xEr-1)*IntRes) + y];

 SensorPattern(y,xEr) = 1;

 end

 end

 end

end

if ShowSensorPattern

 figure(7)

 colormap gray

 image(U(1,:)*z,V(:,1)*z,SensorPattern*64)

 xlabel('X [m]')

 ylabel('Y [m]')

 title('Sensor Pattern')

end

if ShowSensorData

 figure(8)

 colormap([[linspace(0,1,64) 1]', [linspace(0,1,64) 0]', [linspace(0,1,64) 0]']);

 image(U(1,:)*z,V(:,1)*z, (SensorPattern.*Psi2 / max(max(Psi2))*64 + (1-

SensorPattern)*65))

 xlabel('X [m]')

 ylabel('Y [m]')

 title('Sensor Data')

end

%% Performs the phase retrieval

if DoRetrieval

 %% Initialize plots

 if ShowErrorHistory

 figure(5)

 temp = get(gcf,'Position');

 set(gcf,'Position',[temp(1) temp(2) temp(3) 250])

 %set(gcf,'PaperPosition', [temp(1) temp(2) temp(3) 250])

 end

173

 if ShowTrueErrorHistory

 figure(6)

 temp = get(gcf,'Position');

 set(gcf,'Position',[temp(1) temp(2) temp(3) 250])

 end

 %% Allocate Memory

 Error = inf;

 ErrorHistory = [];

 TrueErrorHistory = [];

 PsiEst = zeros(size(U));

 Trials = 0;

 %% Initial Estimate

 % Blank image

 ImgEst = ones(size(X));

 % if(exists('ImgEst_Save'))

 % ImgEst = ImgEst_Save;

 % end

 % Read in 32x32 image and resize it to 64x64 to use as the input to the 64x64

estimation

 % Img32 = mean(imread('Itokawa32.bmp'),3)/255;

 % ImgEst = round(imresize(Img32,[64 64],'bilinear'));

 %% Solve

 i = 0;

 j = 1;

 tic

 for Iteration = 1:Iterations

 for Trial = 1:ImgRes^2

 i = i + 1;

 if i > ImgRes

 i = 1;

 j = j + 1;

 if j > ImgRes

 j = 1;

 end

 end

 TrialImgEst = ImgEst;

 TrialImgEst(i,j) = ~ImgEst(i,j);

 if RandomlyTestSecondPixel

 ir = 0;

 jr = 0;

 if rand(1) > 0.9 && Iteration == 1

 ir = round(rand(1)*(ImgRes-1)+1);

 jr = round(rand(1)*(ImgRes-1)+1);

 TrialImgEst(ir,jr) = ~ImgEst(ir,jr);

 end

 end

 TrialPsiEst = abs(1i - squeeze(sum(Js(:,:,~logical(TrialImgEst)),3))).^2;

 NewError = sum(sum(abs(Psi2(SensorPatternPix(:,1)) -

TrialPsiEst(SensorPatternPix(:,2)))));

 if Trials == 0

 Error = NewError;

 end

 if NewError < Error

 ImgEst = TrialImgEst;

174

 PsiEst = TrialPsiEst;

 Error = NewError;

 end

 % Adding eps makes the value never exactly zero so it will plot on log scale

correctly

 TrueErrorHistory(end+1) = sum(sum(abs(Psi - PsiEst))) + eps;

 ErrorHistory(end+1) = Error + eps;

 if rem(Trial,ImgRes) == 0 || Trial == 1 || 1

 if ShowErrorHistory

 figure(5)

 semilogy((1:length(ErrorHistory))/ImgRes/ImgRes,

ErrorHistory,'LineWidth', 3)

 xlim([0 Iterations])

 ylim([max([10 10^floor(log10(min(ErrorHistory)))])

10^ceil(log10(max(ErrorHistory)))])

 xlabel('Iteration')

 ylabel('Error')

 end

 if ShowCurrentIteration

 figure(100)

 clf

 axes('Position',[0.25 0.45 0.5 0.5])

 temp = ImgEst;

 temp(i,j) = 0.5;

 if RandomlyTestSecondPixel

 if(ir > 0 && jr > 0)

 temp(ir,jr) = 0.5;

 end

 end

 image(X(1,:)*180/pi*60*60,Y(:,1)*180/pi*60*60,temp*4);

 colormap([0 0 0; 1 0 0; 1 1 1])

 xlabel('\theta_x [arcsec]','FontSize',18)

 ylabel('\theta_y [arcsec]','FontSize',18)

 axes('Position',[0.25 0.1 0.5 0.25])

 semilogy((1:length(ErrorHistory))/ImgRes/ImgRes,

ErrorHistory,'LineWidth', 3)

 xlim([0 Iterations])

 ylim([max([10 10^floor(log10(min(ErrorHistory)))])

10^ceil(log10(max(ErrorHistory)))])

 xlabel('Iteration','FontSize',18)

 ylabel('Error','FontSize',18)

 temp = get(gcf,'Position');

 set(gcf,'Position',[temp(1) temp(2) temp(3) 700])

 set(gcf,'PaperPosition', [0 0 576 432])

 %print(gcf, '-dpng', ['Iter' num2str(sprintf('%5.5d',Trials))

'.png']);

 end

 if ShowTrueErrorHistory

 figure(6)

 semilogy((1:length(TrueErrorHistory))/ImgRes/ImgRes,

TrueErrorHistory,'LineWidth', 3)

 xlim([0 Iterations])

 ylim([max([10 10^floor(log10(min(TrueErrorHistory)))])

10^ceil(log10(max(TrueErrorHistory)))])

 xlabel('Iteration')

 ylabel('True Error')

 end

 pause(eps);

 if TrueErrorHistory(end) < 10*eps

 break

 end

 end

175

 Trials = Trials + 1;

 end

 if TrueErrorHistory(end) < 10*eps

 break

 end

 end

 toc

end

fresnelS.m

function FSint = fresnelS(X,fresnelType)

% fresnelS - Fresnel sine integrals, S(X), S1(X), or S2(X)

% usage: FSint = fresnelS(X,fresnelType)

%

% Fresnel sine integrals fall into three classes, simple

% transformations of each other. All three types described

% by Abramowitz & Stegun are supported.

%

% The maximum error of this code has been shown to be less

% than (approximately) 1.5e-14 for any value of X.

%

% arguments: (input)

% X - Any real, numeric value, vector, or array thereof.

% X is the upper limit of the Fresnel sine integral.

%

% fresnelType - scalar numeric flag, from the set {0,1,2}.

%

% The type 0 Fresnel sine integral (A&S 7.3.1)

% S(x) = \int_0^x sin(pi*t^2/2) dt,

%

% Type 1 (A&S 7.3.3a)

% S_1(x) = \sqrt(2/pi) \int_0^x sin(t^2) dt

%

% Type 2 (A&S 7.3.3b)

% S_2(x) = \sqrt(1/2/pi) \int_0^x sin(t) / \sqrt(t) dt

%

% arguments: (output)

% FSint - array of the same size and shape as X, containing

% the indicated Fresnel sine integral values.

%

% REFERENCES

% [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Error Function and Fresnel

% Integrals." Ch. 7 in Handbook of Mathematical Functions with

% Formulas, Graphs, and Mathematical Tables, 9th printing. New York:

% Dover, pp. 295-329, 1970.

%

% [2] Mielenz, K. D.; "Computation of Fresnel Integrals", Journal of

% Research of the National Institute of Standards and Technology,

% Vol 102, Number 3, May-June 1997

% http://nvl.nist.gov/pub/nistpubs/jres/102/3/j23mie.pdf

persistent FSspl

if (nargin < 1) || (nargin > 2)

 error('FRESNELS:improperarguments','1 or 2 arguemtns are required.')

end

% default for fresnelType

if (nargin < 2) || isempty(fresnelType)

 fresnelType = 0;

else

 if ~isnumeric(fresnelType) || ~ismember(fresnelType,[0 1 2]) || (numel(fresnelType) ~=

1)

 error('FRESNELS:fresnelType', ...

176

 'fresnelType must be scalar, one of {0,1,2} if supplied.')

 end

end

% X must be real, but of any shape.

if any(imag(X) ~= 0)

 warning('FRESNELS:complexarguments','X should be real. Imaginary part will ignored.')

 X = real(X);

end

% preallocate FSint to the proper size

FSint = zeros(size(X));

% flag any negative X, make it positive.

S = X < 0;

X(S) = -X(S);

% transform the type 1 and 2 problems into type 0

switch fresnelType

 case 1

 X = sqrt(2/pi)*X;

 case 2

 X = sqrt(2*X/pi);

end

% The upper limit of the tables is 7.5.

Xlim = 7.5;

% klim is a boolean variable that indicates values that exceed Xlim.

klim = (X > Xlim);

if any(klim(:))

 % we found some values that exceed the limit. Use

 % the rational approximations provided in Mielenz [2]

 % for the associated functions f(z) (see (4a)) and

 % g(z) (see (4b)). The approximations are carried to

 % additional terms beyond that displayed in Mielenz.

 %

 % For abs(X) >= 7.5, these yield results with

 % roughly 15 significant digits.

 xk = X(klim);

 FSint(klim) = 0.5 - (1 - 3/pi^2 ./xk.^4 + 105/pi^4 ./xk.^8 - ...

 10395/pi^6 ./xk.^12 + 2027025/pi^8 ./xk.^16).*cos(pi/2*xk.^2)./(pi*xk) - ...

 (1 - 15/pi^2 ./xk.^4 + 945/pi^4 ./xk.^8 - 135135/pi^6 ./xk.^12 + ...

 34459425/pi^8 ./xk.^16).*sin(pi/2*xk.^2)./(pi^2*xk.^3);

end

klim = ~klim;

% for abs(Xlim) <= Xlim, we will use a spline interpolant of the

% sine integral itself.

if any(klim(:))

 % have we loaded the appropriate spline?

 if isempty(FSspl)

 load _Fresnel_data_ FSspl

 end

 % do the interpolation itself using ppval. This will be

 % better than calling interp1 with the 'spline' option,

 % since it avoids overhead of calling an already created

 % and stored spline. It will be better than pchip or the

 % 'cubic' option for interp1 since the spline will be

 % considerably more accurate.

 FSint(klim) = ppval(FSspl,X(klim));

end

% The Fresnel sine and cosine integrals are odd functions of X,

% so swap signs for any negative X.

177

FSint(S) = - FSint(S);

end % mainline end

fresnelC.m

function FCint = fresnelC(X,fresnelType)

% fresnelC - Fresnel cosine integrals, C(X), C1(X), or C2(X)

% usage: FCint = fresnelC(X,fresnelType)

%

% Fresnel cosine integrals fall into three classes, simple

% transformations of each other. All three types described

% by Abramowitz & Stegun are supported.

%

% The maximum error of this code has been shown to be less

% than 1.5e-14 for any value of X.

persistent FCspl

if (nargin < 1) || (nargin > 2)

 error('FRESNELC:improperarguments','1 or 2 arguemtns are required.')

end

% default for fresnelType

if (nargin < 2) || isempty(fresnelType)

 fresnelType = 0;

else

 if ~isnumeric(fresnelType) || ~ismember(fresnelType,[0 1 2]) || (numel(fresnelType) ~=

1)

 error('FRESNELC:fresnelType', ...

 'fresnelType must be scalar, one of {0,1,2} if supplied.')

 end

end

% X must be real, but of any shape.

if any(imag(X) ~= 0)

 warning('FRESNELC:complexarguments','X should be real. Imaginary part will ignored.')

 X = real(X);

end

% preallocate FCint to the proper size

FCint = zeros(size(X));

% flag any negative X, make it positive.

S = X < 0;

X(S) = -X(S);

% transform the type 1 and 2 problems into type 0

switch fresnelType

 case 1

 X = sqrt(2/pi)*X;

 case 2

 X = sqrt(2*X/pi);

end

% The upper limit of the tables is 7.5.

Xlim = 7.5;

% klim is a boolean variable that indicates values that exceed Xlim.

klim = (X >= Xlim);

if any(klim(:))

 % we found some values that exceed the limit. Use

 % the rational approximations provided in Mielenz [2]

 % for the associated functions f(z) (see (4a)) and

 % g(z) (see (4b)). The approximations are carried to

 % additional terms beyond that displayed in Mielenz.

 %

178

 % For abs(X) >= 7.5, these yield results with

 % roughly 15 significant digits.

 xk = X(klim);

 FCint(klim) = 0.5 + (1 - 3/pi^2 ./xk.^4 + 105/pi^4 ./xk.^8 - ...

 10395/pi^6 ./xk.^12 + 2027025/pi^8 ./xk.^16).*sin(pi/2*xk.^2)./(pi*xk) - ...

 (1 - 15/pi^2 ./xk.^4 + 945/pi^4 ./xk.^8 - 135135/pi^6 ./xk.^12 + ...

 34459425/pi^8 ./xk.^16).*cos(pi/2*xk.^2)./(pi^2*xk.^3);

end

klim = ~klim;

% for abs(Xlim) <= Xlim, we will use a spline interpolant of the

% cosine integral itself.

if any(klim(:))

 % have we loaded the appropriate spline?

 if isempty(FCspl)

 load _Fresnel_data_ FCspl

 end

 % do the interpolation itself using ppval. This will be

 % better than calling interp1 with the 'spline' option,

 % since it avoids overhead of calling an already created

 % and stored spline. It will be better than pchip or the

 % 'cubic' option for interp1 since the spline will be

 % considerably more accurate.

 FCint(klim) = ppval(FCspl,X(klim));

end

% The Fresnel sine and cosine integrals are odd functions of X,

% so swap signs for any negative X.

FCint(S) = - FCint(S);

end % mainline end

generateTables.m – To be called once before using fresnelC.m and fresnelS.m

% ===

% Code used only to generate and save the integral tables

% ===

function generateTables

% Generate the integral tables, more accurate than Abramowitz &

% Stegun provide, since they give only 7 digits.

FresnelCObj = @(t) cos(pi*t.^2/2);

FresnelSObj = @(t) sin(pi*t.^2/2);

p = 1.75;

T0 = linspace(1,7.5.^p,501).' .^(1/p);

dt = T0(2) - T0(1);

T0 = [linspace(0,1 - dt,ceil(1./dt))';T0];

plot(diff(T0))

n = length(T0);

FC75 = zeros(n,1);

FS75 = zeros(n,1);

h = waitbar(0,'Computing Fresnel integrals');

for i = 2:n

 waitbar(i/n,h)

 FC75(i) = quadgk(FresnelCObj,0,T0(i),'abstol',1.e-16,'reltol',100*eps('double'));

 FS75(i) = quadgk(FresnelSObj,0,T0(i),'abstol',1.e-16,'reltol',100*eps('double'));

end

delete(h)

% Turn them into splines, then save the splines. These splines are

179

% first built in a Hermite form, since I can supply the 1st and second

% derivatives of the function. Then I turn them into a pp form, for use

% in fresnelC and fresnelS.

FCspl = hermite2slm([T0,FC75,FresnelCObj(T0), -pi*T0.*sin(pi*T0.^2/2), ...

 -pi*(sin(pi*T0.^2/2) + pi*T0.^2 .*cos(pi*T0.^2/2))]);

FCspl = slm2pp(FCspl);

FSspl = hermite2slm([T0,FS75,FresnelSObj(T0),pi*T0.*cos(pi*T0.^2/2), ...

 pi*(cos(pi*T0.^2/2) - pi*T0.^2 .*sin(pi*T0.^2/2))]);

FSspl = slm2pp(FSspl);

save _Fresnel_data_ FCspl FSspl

% test the result

clear functions

n = 1000;

T = sort(rand(n,1)*10);

FCquad = zeros(n,1);

FSquad = zeros(n,1);

for i = 1:n

 FCquad(i) = quadgk(FresnelCObj,0,T(i),'abstol',1.e-16);

 FSquad(i) = quadgk(FresnelSObj,0,T(i),'abstol',1.e-16);

end

FCpred = fresnelC(T,0);

FSpred = fresnelS(T,0);

subplot(1,2,1)

plot(T,FCquad - FCpred,'.')

grid on

subplot(1,2,2)

plot(T,FSquad - FSpred,'.')

grid on

end

