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ABSTRACT 

 In this dissertation the various forms and applications of the phase retrieval 

problem in imaging are discussed. The phase retrieval problem in general refers to the 

estimation of the phase of a complex-valued function based on knowledge of its 

magnitude. Here the phase retrieval problem is applied to the estimation of the phase of an 

electromagnetic wave field based on knowledge of its magnitude. The magnitude (not the 

phase) can be measured using several devices as discussed. 

 There are many applications of phase retrieval which have been explored where 

the mapping between the detected wave field magnitude and the light source is the Fourier 

transform. Within these applications phase retrieval solutions are used to estimate the 

phase of the Fourier transform so as to obtain the image or the shape of the light emitter. 

These solutions necessitate a model of the propagation of the wave field, a method of 

detecting the field’s magnitude, and a method of estimating the phase of the observed field. 

The first two considerations are discussed here historically and reference many significant 

scientific discoveries, namely the Huygens-Fresnel principle, the Van Cittert-Zernike 

theorem, and the Michelson interferometer. 

 Within the field of interferometry where the Fourier transform is the mapping 

between the light source and observed wave field, most solutions utilize a discrete Fourier 

transform. The estimate of the light source takes the form of a two-dimensional pixelated 

image. These solutions have been explored for many years and have many variations for 

particular applications. Not many of these solution methods, however, have confronted the 
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problem of measurement noise. Measurement noise here refers to noise in the 

quantification of the magnitude of the wave field at the observed locations. Within this 

dissertation the negative effects of noise are analyzed and a method of filtering the noise 

from the data is derived, tested, and shown to be effective. In a separate analysis the use 

of the discrete Fourier transform as opposed to the continuous Fourier transform is 

questioned. A phase solution is proposed which is capable of estimating the source of the 

observed wave field and takes discrete magnitude data and outputs a continuous image 

function formed from Gaussian bases. This method is beneficial from an analytical point-

of-view since it is not an iterative solution. It also has an error metric which definitively 

determines whether the true solution has been found—unlike the traditional solution 

methods. 

 The phase retrieval problem is also explored in the case where the Fourier 

transform is not the mapping between the image and the observed wave field. Particularly, 

the case of a small asteroid occulting a star is analyzed with the goal of characterizing the 

shape of the asteroid’s silhouette. A solution is formulated capable of resolving the asteroid 

silhouette based on time histories of the intensity of the wave field measured at multiple 

spatial locations. The solution is based on an analysis of the shadow that the occulter casts. 

 The phase retrieval problem is present in many current fields of imaging and 

remains a prominent source of inquiry. Although many solution methods exist, there are 

still many improvements that can be made. This dissertation addresses some potential 

improvements to existing solutions and proposes new applications and formulations of the 

phase retrieval problem.  
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NOMENCLATURE 

    Angular frequency of light 

     Data coverage ratio 

R     Distance from source to observer 

z     Distance from object to observer 

...    Ensemble average operator 

 U t     Electromagnetic field 

 E t     Electric field 

 I t     Electric field intensity 

S   Far field source object’s plane 

 ,
x y

     Far field source object/image angular view coordinate 

 ,x x y    Far field source object/image spatial coordinate 

 I t    Fluctuation in electric field intensity 

 ,u u v    Fourier domain coordinates 

 F x     Fresnel integral 

F     Fresnel number 

 I x    Image pixel value 

ICI   Intensity correlation interferometry 
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    Light wavelength 

    Normalized mutual coherence 

 J u    Mutual coherence 

MTF   Modulation transfer function 

O   Observation plane 

 ,     Observation plane coordinates 

OTF,  ˆ ...O   Optical transfer function 

    Phase of a complex value 

RMS   Root Mean Squared 

      Silhouette Function 

c     Speed of light 

SNR   Signal-to-noise ratio 
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1. INTRODUCTION 

 The phase retrieval problem in general is the estimation of the phase of a complex-

valued function based primarily on its known magnitude. This problem can be found in 

many areas of physics, but most attention has been placed on its various forms within the 

recovery of a wave field’s properties using measured diffraction information. This field of 

study is commonly referred to as interferometry. Within most of these applications, an 

electromagnetic wave field is emitted by some objective, and this field’s amplitude is 

measured some distance away. In order for the observer to determine the field at the 

objective, the measured amplitude is used to devise an estimate of the field’s phase at the 

observer’s location. Based on the knowledge of the field’s propagation, observed 

amplitude, and estimated phase, the field’s origin at the objective can be determined. There 

are thus three areas to explore within the phase retrieval problem: a wave field’s 

propagation based on a physical model, an experimental means of observing a wave field’s 

amplitude, and the estimation of the phase of the observed field. In this work the first two 

are discussed in a historical context to introduce the latter. Many approaches to the 

estimation of the phase have been devised for various applications. The methods that are 

associated with the applications discussed here are explained and compared. 

 The underlying theme of this work is the various formulations of the phase 

retrieval problem applied to imaging. Almost all research in phase retrieval is based on 

the early work of Gerchberg and Saxton—explained in detail later. The premise of their 

methods is that an illuminated object emits light (electromagnetic radiation) towards an 
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observer. The vector components of the electromagnetic field are described by complex-

valued functions, and measurement devices are typically only sensitive to the electric field. 

Since all components of the electric field satisfy the wave equation, scalar diffraction 

theory is used to describe the light’s wave field. Scalar diffraction theory represents the 

wave field as a complex-valued function in spatial position and time. In this work, the 

absolute magnitude of the complex wave field is referred to as the “amplitude.” The 

amplitude or amplitude-squared of the light’s wave field is detected by some means at 

some known positions relative to the objective. Knowledge of the wave field’s amplitude 

is used in conjunction with the knowledge of the propagation of light to reconstruct an 

image of the object. The three components of the phase retrieval process are evident. The 

detection of the wave field amplitude is performed by some apparatus—an intensity 

detector. The phase of the observed field at the detector must be estimated by some means. 

Lastly, the wave field amplitude and phase at the observer, combined with knowledge of 

the dynamics of the wave field propagation, are used to determine a fine-resolution image 

of the objective. Here, these three components are described and used to formulate and 

solve three distinct problems in phase retrieval. These three problems are namely recovery 

of a pixelated image of an object, recovery of a continuous image of an object, and 

recovery of the silhouette of an object which is occulting a light source. Each of these 

methods is suited for particular applications. In particular, the first two topics are primarily 

associated with interferometry while the last is unique. 

 Within this dissertation, section 1 contains discussions on the wave nature of light. 

This discussion contains both historical and mathematical models for light propagation 
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which has led to the current understanding of light. Next, Section 1 discusses methods of 

detecting a light field and gives the mathematical rationale for an interferometer. The 

Michelson interferometer and intensity correlation interferometer designs are discussed in 

detail. Several practical applications are also discussed with the most attention placed on 

the intensity correlation interferometer. Section 2 presents some of the noteworthy 

methods of solving the phase estimation problem. The techniques used here to compare 

phase retrieval algorithms are also presented. Section 3 gives an original method of solving 

the phase problem that builds on the current state-of-the-field methods for handling noise 

in the measurement of the light field’s amplitude. Its derivation is discussed in detail, and 

its performance is explored in various scenarios. Section 4 presents a new, unique 

formulation of the phase retrieval problem which most accurately captures the physics of 

using telescopes to detect the wave field emitted from distant objects. Section 5 presents 

progress on characterizing the silhouette of asteroids by observing their shadow when 

occulting a distant star. Finally, the Conclusion highlights the contributions of this 

research to the physics and engineering communities. The work presented in Section 3 has 

been previously published in [1, 2], Section 4 has been published in [3], and Section 5 has 

been published in [4]. The material discussed here expands on the discussions in the 

previous publications. 

1.1. Light as a Wave Field 

 The description of light has been the object of inquiry for millennia across many 

cultures. In classical Greece Empedocles in the fifth century BC held that light was emitted 

by the human eye which contained the four elements: fire, air, earth, and water. The first 
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mathematical approaches were made by Euclid around 300 BC who described light as 

traveling in straight lines and described reflection. Ptolemy described refraction in the 

second century in his book Optics. In ancient Indian Hindu philosophy schools taught that 

light was one of the five fundamental elements. The Vaisheshika School posed light as 

fire atoms. Most ancient descriptions of light contributed to setting the precedent of 

describing light as a particle [5]. 

 In more modern times, the particle theory of light was further advanced by René 

Descartes. In his 1637 publication, he described refraction as being caused by changes in 

the speed of light. He erroneously concluded that light propagation is analogous to sound 

propagation which increases in speed in thicker media. In fact, the opposite is true for 

light. Pierre Gassendi also published a particle theory of light which was embraced by 

Isaac Newton. Newton published his Hypothesis of Light in 1675 in which he speculated 

that light is composed of corpuscles [6]. In his 1704 publication Opticks, he was able to 

describe refraction but did so incorrectly by attributing the acceleration of corpuscles when 

changing media to differences in gravitational pull in materials of differing density. 

Concurrently, Robert Hooke was working on his 1665 publication Micrographia in which 

he suggested the first wave theory of light by concluding that light vibrates perpendicular 

to the direction of propagation [7, 8]. He observed interference phenomena in soap bubbles 

and oil on water. He was not able to fully explain these phenomena, but he attributed them 

to light being a wave. Christiaan Huygens published a mathematical wave theory for light 

in 1690 called the Treatise on Light. He held that light waves are independent of gravity 

and slow when entering dense mediums. Huygens correctly postulated that every point 
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illuminated by light can be thought of as a point source of light. Leonhard Euler published 

his support for the wave theory of light in 1746 citing diffraction as evidence of light being 

a wave field.  The wave theory was later validated by Thomas Young around 1800 using 

his double-slit diffraction experiment [9]. Augustin-Jean Fresnel developed a 

mathematical wave theory of light which built upon Huygen’s work and employed a pure 

transverse wave [8]. He was able to explain reflection, refraction, and double refraction. 

Huygens and Fresnel’s works are commonly combined and referred to as the Huygens-

Fresnel principle. There were many contributors to the description of light, but the 

aforementioned are the key contributors to the models needed here [10]. 

 The culmination of the various theories of light give the modern Huygens-Fresnel 

model which is used in developing the phase retrieval problem. In the following work, the 

time dependence of the wave field is assumed to be nearly periodic at frequency  . This 

is the well-known quasi-monochromatic assumption. Further, we adopt the common 

practice of embedding the wave propagation formulation in the complex domain.   In this 

model, the most basic result is that a point source of light creates a spherically-spreading 

wave field. Assuming the wave field is created with strength 0
U , wavelength  , and 

speed c , the complex value of the wave field at a point P  due to the source at point Q  

is [11] 

   0
2

exp .
U c

U i t i





 
   

  
P P Q

P Q
  (1.1) 

where P  and Q  are the position vectors of the observation and source points, 

respectively. 
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Since a true point source of light cannot be realized, this idea needs to be generalized to 

describe a region emitting light. Using the principle of superposition, the field due to an 

infinitesimal area can be summed over a spatial region to describe a finite source of light 

in the form 

   0
2

exp
U c

U i t i d





 
   

  
P P Q Q

P Q
  (1.2) 

  A simple example for utilizing the wave field idea is the Fraunhofer Single Slit 

experiment. In this experiment monochromatic planar waves arrive at a wall, the image 

plane, which has a small opening. The light passes through the small slit and propagates 

until it reaches a second solid wall, the observation plane. The slit has width w  and the 

two walls are separated by the distance D . The goal of the example is to compute the 

intensity of the wave field across the observation plane. The diagram is shown in Fig. 1. 

 A point P  on the observation plane receives light from every point within the slit, 

but the phase is shifted by   due to the different distances across the slit to P . The light 

taking the shortest path from the slit to P  is considered a reference and has 0  . The 

maximum phase difference which is associated with the longest path from the slit to P  is 

 max
.

w y

D





   (1.3) 

According to the Huygen-Fresnel principle, every illuminated point within the slit acts as 

a point source. By adding the wave field emitted by these point sources using equation 

(1.2), the spatially dependent part of the wave field at point P  is expressed as 
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    
m ax

0

0

0

max

R e exp

sinc

U
E y i d

D

U

D



 








  (1.4) 

Hereon, the sinc  function is defined as    sinc sin   . Intensity is defined as the 

square of the amplitude of the field. The total intensity at a point  yP  on the observation 

plane as shown in Fig. 1 is thus 

  

2

0
sinc .

U w y
I y

D D





 
  
 

  (1.5) 

The intensity pattern shown in Fig. 1 at the observation plane corresponds to equation 

(1.5). Fig. 2 is a photograph from an experiment using a laser and a single slit to visually 

confirm this derivation. This example shows the correlation between the Huygen-Fresnel 

principle’s suggested behavior of light going through a single slit and the reality observed 

in an experiment. 
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Fig. 1. Schematic of the Fraunhofer single slit experiment. 

 

 

 

Fig. 2. Photograph of the interference pattern resulting from a laser beam going through a single slit 

[12]. 
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 The double-slit experiment is a continuation of the Fraunhofer single-slit 

experiment as shown in Fig. 3. After passing through the single-slit, the field passes 

through the second wall which has two equally sized slits. The field emanating from these 

two slits is them made to interfere and project an interference pattern on the observation 

plane. The propagation from the wall with the double-slits to the observation plane is the 

region of interest. The double-slit experiment was first performed by Thomas Young and 

is one of the first forms of conclusive evidence that light indeed is a wave [9]. 

 The double-slit experiment can be analyzed in the same manner as the double slit 

experiment. The path length from the top slit to a point P  is 

 

2

2 2

1
sin

2

L
r r Lr 

 
   

 
  (1.6) 

and the path length for the bottom slit is 

 

2

2 2

2
sin

2

L
r r Lr 

 
   

 
  (1.7) 

where D  is the distance between the walls, L  is the distance between the slit centers, 

and 
1

sin
y

D



 . When D L , the difference between the two path lengths is 

approximated as 

 
2 1

sinr r L      (1.8) 

The wave field is thus 
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  (1.9) 

The resulting intensity is 

  
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w y
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 
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   
   

   

 
 

  (1.10) 

 This interference pattern is shown in the schematic in Fig. 3. Notice that the 

computed pattern matches the interference pattern viewed in an experiment as shown in 

Fig. 4. Most notable a high frequency oscillation is mixed with a low frequency sinc  

function.  
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Fig. 3. Schematic of the double-slit experiment. 

 

 

 
Fig. 4. Photograph of the diffraction pattern resulting from a laser going through a double slit [17]. 
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1.2. The Van Cittert-Zernike Theorem 

 Section 1.1 gave the history and an example of the wave theory of light. In the 

example, the wave field was propagated from the source to the observation plane through 

a simple slit. The propagation process as previously derived can be quite cumbersome for 

an arbitrarily shaped source. The Van Cittert-Zernike theorem addresses this issue and 

creates a mapping between the source geometry and the intensity at the observation plane 

which turns out to be the Fourier transform. The traditional phase retrieval problem is 

based entirely on this mapping so its derivation will be shown [13, 14]. The theorem 

expresses the cross-correlation of the field measured at two points on the observation plane 

in terms of the intensity distribution of the radiant object to be imaged. It is assumed that 

the object is an incoherent source, i.e. any two source points radiate with phases that are 

random and uncorrelated. The exact form of the theorem is complicated, but usual 

conditions yield some algebraic simplifications and Taylor series expansions which lead 

to the Fourier transform as the mapping between the source and observation. Due to the 

simplicity of its final form and especially the fact that it relates quantities that can be 

measured even in the high frequency optical regime, the Van Cittert-Zernike theorem is 

more commonly used to predict the propagation of light than the Huygen-Fresnel principle 

alone. 
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Fig. 5. Two observer in an observation plane and a light source in the far-field plane. 

 Consider a point light source on the far-field parameterized by position  , yx x  

and time t . The field at some point  ,
j

    on the observation plane is thus 

    
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E x t A x t i

R



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  (1.11) 

where A  is the strength of the source field, j
R is the distance from the source position x  

to the observation position j
 ,   is the mean wavelength, and c  is the speed of light. 

The mean wavelength refers to the center of a narrow band of wavelengths. This is denoted 

the quasi-monochromatic assumption. Consider that the field is observed at two spatial 

positions 1
  and 2

 . The time average of the product of the fields from the same point 

source is the first-order correlation [15], 

  

Far-field Source Plane  

(S) 

Observation Plane 

(O) 

  R
1
 

  

R
2
 

Observers 

   



14 

 

 

   
*

1 2

1 2

1 2

1 2

, ,

exp 2 exp 2

, , .

E x t E x t

ct R ct R
i i

R R
A x t A x t

c c R R

 
 

    
   

       
     

   

  (1.12) 

The time shifts represent the phase shift of the wave as it travels over some distance. Time 

can arbitrarily be shifted to simplify which gives 
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This time shift complicated one of the amplitude terms. Under the condition 

1 2
c t R R   where t  is the measurement time interval, the expression further 

simplifies to 
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   (1.14) 

The intensity of the field is defined as the square of the amplitude so    , ,A x t A x t  is 

the average intensity of the source at x  which gives 

      
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R R
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   (1.15) 

Equation (1.15) is the mutual coherence of the field emitted by the source at x  between 

the observations points 1
  and 2

 . Integrating this equation over the entire intensity 

distribution of the source gives the coherence equation 
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A position x  in the source plane can be defined in terms of the direction cosines 

, ,
x y

x y

R R
  

 
  
   

 
 for R x  and R y . Applying this change of variables requires 

a change in the variable of integration which gives 
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   (1.17) 

The integral can thus be rewritten as 
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The 
1 2

R R




 term can be simplified with a few steps. Let R  be the normal distance from 

the source plane to the observation plane. If  ,
i i i

    it follows that 
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Expanding the square root in a Taylor series gives 
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  (1.20) 

With the definition of the wavenumber plane, also referred to as the “u-v plane,”  

 
2 1 2 1,  u v

   

 

 
    (1.21) 
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and with the far-field plane expressed as 

 
1 2 1 2,  ,
2 2

x y
R R

   
 

 
    (1.22) 

it follows that 

 
2 1

x y

R R
u v 




   . (1.23) 

The mutual coherence is thus 

       , , exp 2
x y x y x y

J u v I i u v d d           (1.24) 

which is the form of a standard two-dimensional Fourier transform [16]. 

 Fig. 6 shows a graphical relationship between the angular picture frame and 

angular resolution quantities in the image and Fourier domains. This figure serves as a 

visual for the concept that information in the Fourier domain far away from the origin 

represents the detail in the image, whereas information near the origin in the Fourier 

domain represents the large features in the image. This diagram assumes a finite aperture 

with a finite field of view viewing an infinite scene. 
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Fig. 6. Graphical representation of the θ angular spatial plane which contains the image and the 

Fourier UV wave number plane. 
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1.3. Optical Interferometry 

 Along with the maturation of the wave theory of light came applications of the 

theory to various fields of science, particularly astronomy. In 1868 Fizeau devised a 

method of measuring the angular dimensions of a star using two slits in front of a 

telescope. In 1890 Michelson successfully implemented Fizeau’s idea to measure the 

diameter of the moons around Jupiter which marked the birth of stellar interferometry 

which has since taken several forms [8]. 

 In general, an interferometer splits a wave field into two or more paths and 

recombines the paths in a controlled way. For example, the double-slit experiment takes 

the light from the first slit, splits it by passing it through the double slit mask, and combines 

the light from the double-slits on the observation plane. There are many types of 

interferometers that demonstrate various phenomena, many of which serve as technical 

demonstrations. Michelson devised the first interferometer with the purpose of making 

astronomical observations which marked the beginning of the stellar interferometry field. 

 The Michelson stellar interferometer, being one of the earliest, is quite simple [18]. 

Light from a star is collected by two separated apertures. The lights is brought from the 

two apertures to a central combiner. The combiner is essentially a telescope which focuses 

the light from the two apertures onto an observation plane where the interference pattern 

is visible. A major complication with the Michelson interferometer and other comparable 

interferometers is the precision required along the light paths. The two paths must have 

lengths accurate to within a small fraction of the wavelength of the light to prevent phase 

shifting which essentially blurs the interference pattern. This problem has been handled 
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satisfactorily but still poses significant technical and financial burdens [19]. The schematic 

is shown in Fig. 7. A Michelson interferometer was added to the Hooker telescope in 1920 

shown in Fig. 8. A modern 437 meter optical Michelson interferometer is shown in Fig. 9 

and is one of the largest in the world. It combines six beams from apertures in a Y 

configuration. There are dozens of types of optical interferometers that build upon the idea 

within the Michelson interferometer. Each has its own benefits, complications, and 

applications—enough that an exhaustive list here is unnecessary. 

 

 
Fig. 7. Schematic of a Michelson stellar interferometer showing the incoming lights path to the focal 

point. 
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Fig. 8. Twenty-foot Michelson interferometer for measuring star diameters, attached to upper end 

of the skeleton tube of the 100-inch Hooker telescope [20]. 

 

 
Fig. 9. Navy Prototype Optical Interferometer, Anderson Mesa, Flagstaff [21]. 
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 A field of interferometry that aims to mitigate the necessity of precision optics as 

is needed for a Michelson interferometer is intensity correlation interferometry. These 

optically simpler interferometers capture incoming light at two apertures which use 

photodetectors to quantify the intensity of incident light. The photodetector measurements 

are then combined computationally instead of physically. This concept allows for 

apertures to be moved arbitrarily without the need for precise measurement of the path 

length. This technique was pioneered by Robert Hanbury Brown and Richard Twiss and 

was published in 1954 [22]. 

 The Hanbury Brown and Twiss effect correlates the arrival of photons at two 

spatially separated photodetectors as shown in Fig. 10. The correlation between photon 

arrival times is proportional to the coherence of the light source [23]. This means that if 

laser light is used there is no correlation between the photon arrivals at the two detectors. 

If light from a thermal source is used, however, the correlation is non-zero and positive. 

The interferometer as shown in Fig. 10 is merely an autocorrelation bench-top apparatus 

for demonstrating the Hanbury Brown and Twiss effect. 

 



22 

 

 
Fig. 10. Schematic of an intensity correlation interferometer. 

 

 
Fig. 11. Schematic of the stellar intensity correlation interferometer. 
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Fig. 12. Photograph of the Narrabri stellar interferometer used by Hanbury Brown and Twiss [24]. 
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 For application to stellar interferometry, the intensity interferometer is modified 

from its bench-top form as shown in Fig. 10. Two separated light collectors measure the 

total intensity of the incoming light using photodetectors [25, 26]. The intensities are the 

square of the complex field at the two spatial locations: 

      
*

1 1 1
I t E t E t   (1.25) 

and 

      
*

2 2 2
.I t E t E t   (1.26) 

The intensity interferometer includes equipment to compute the time-averaged cross-

correlation of the fluctuations of the two intensity measurements about their average 

values. Brown and Twiss’ significant discovery was that the cross-correlation is 

proportional to the magnitude of the mutual coherence of the wave field at the relative 

position of the two telescopes. There is also a proportionality constant that relates the 

cross-correlation with the mutual coherence which is not discussed here. The mutual 

coherence is the magnitude of the quantity  J u  in the Van Cittert-Zernike theorem. If 

the coherence magnitude is measured at sufficiently many relative positions of the 

telescopes (positions in the u-v plane), and if the phase of  J u  can be estimated, an 

inverse Fourier transform can yield the image of the object. This explains the role of phase 

retrieval in intensity interferometry. 

1.4. Applications of Phase Retrieval 

 The phase retrieval problem has applications in many fields and is not limited to 

imaging; however, only imaging applications are considered here. One of the most 
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common applications of phase retrieval is in crystallography. Crystallography refers to a 

method of observing the crystalline structure of a material. Crystallography has become 

commonplace in the analysis of large biomolecules such as proteins and for inorganic 

crystalline materials. Different wave fields can be used for crystallography such as x-rays, 

neutrons, and electrons. These are considered because the wavelength of these fields is 

less than the length of the atomic bonds in the specimen. The wave field is passed through 

the material where it interacts with the atoms leaving a diffraction pattern. The diffraction 

pattern is often observed with a film or array of discrete detectors. The phase retrieval 

process can then be used to determine the two or three dimensional arrangement of the 

atoms in the structure. 

 Coherent Diffractive Imaging (CDI) is another method of imaging which employs 

the phase retrieval process. This imaging method is typically applied to nano-scale 

structures which include nanotubes [27], nano-crystals [28], and material defects [29]. 

CDI uses either electromagnetic or electron beams to produce a diffraction pattern which 

requires phase retrieval to recover the shape of the structure. 

 A Transmission Electron Microscope (TEM) is typically capable of producing an 

image on a detector; however, when observing a crystal structure the signal-to-noise ratio 

can be increased by focusing the TEM to produce a diffraction pattern [30]. It then 

functions in a similar fashion as the CDI method. 

 Astronomical interferometry also presents an application for phase retrieval and 

can be posed as a macro-scale analog to the crystallography method. A distant source of 

coherent light produces a diffraction pattern via the propagation of light over long 
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distances as described by the Van Cittert-Zernike theorem. Intensity interferometers thus 

require a solution to the phase problem to recover the shape of the light source. Application 

of this idea is difficult because where the diffraction pattern in crystallography is very 

small, the usable diffraction pattern for astronomical imaging can be many kilometers in 

size. The practicality of building a data collection device is thus a topic of ongoing 

research. 

 Phase retrieval has also been implemented in the analysis of aberrations in optical 

devices. As an example, the aberrations in the Hubble space telescope were diagnosed and 

characterized through a phase retrieval process [31, 32]. This analysis was used to 

determine the optical transfer function of the Hubble telescope prior to its servicing. By 

finding the true optical transfer function, which differs from the designers’ intended 

optical transfer function, some adaptive methods were devised to mitigate the blurriness 

induced by the lens’ aberrations. 

 Within the work described here in Section 5 and in [4], the phase retrieval problem 

has been applied to stellar occultation. Within this problem, light from a distant star passes 

around an occulting asteroid. After passing the asteroid the resulting wave field is subject 

to diffraction. The resulting wave field can be observed by multiple observers as a 

diffraction pattern. Using this diffraction pattern to determine the geometry of the 

occulting asteroid yields a phase retrieval problem. There are many other forms of the 

phase retrieval problems but the ones discussed here serve as a brief, representative list.  
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2. EXISTING PHASE RETRIEVAL METHODS 

 Through research in the various applications of intensity interferometry, several 

methods of phase retrieval have been devised. Most require some form of a priori 

knowledge. If not to actually perform the computation, some knowledge of the image is 

required to know what algorithms are applicable. Researchers continue to seek a globally 

applicable algorithm which requires no a priori knowledge. This sections presents many 

of the current algorithms for phase retrieval and gives brief explanations of some of them. 

Some of these algorithms will be referred to in later sections. 

 To fully understand the difficulties in the phase retrieval problem an exact solution 

is considered in the following [33]. In this example consider a pixelated N N  image 

where the Fourier domain magnitude  ,A u v  is known. Since every pixel in the image 

is a square, the Fourier domain is the convolution of the Fourier transform of each pixel’s 

independent Fourier transform. The Fourier transform of a single pixel at the origin with 

intensity I  is 

      , sinc sinc .J u v I u v   (2.1) 

The measured quantity  ,A u v  is thus a sum of all of the pixel’s Fourier transforms 

taking into account the translation of each pixel relative to the origin of the image. The 

sum is thus 
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Evaluating the square of this expression gives a system of non-linear algebraic equations 
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  (2.3) 

This system has 2
N  unknowns and 2

N  solutions. Any one pixel can be constrained 

such that its phase is a specified value. As an example consider  1,1 0  . The system of 

equations simplifies to  
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  (2.4) 

This system of equations does have a unique solution but is still difficult to solve 

numerically. 

 The primary purpose of this discussion is to call attention to the non-uniqueness of 

a solution. Solving equation (2.3) is tantamount to factoring a polynomial in two variables. 

This means the Fundamental Theorem of Algebra does not hold, and thus non-unique 

solutions can exist. Fortunately the probability of encountering Fourier magnitude data in 
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field observations that permits these ambiguities is low. The most common ambiguities 

correspond to rotations, translations, and super-positions of solutions. Due to the high 

dimensionality, non-linearity, and non-uniqueness of a solution, the direct computation of 

the phase from a relationship such as equation (2.3) is infeasible. 

2.1. The Error-Reduction and Hybrid Input-Output Methods 

 An iterative algorithm was developed by Gerchberg and Saxton which was later 

improved by Fienup called the error-reduction (ER) method [34, 35].  This algorithm, 

shown graphically in Fig. 13, exploits the discrete nature of an image and the ease with 

which a discrete 2-d image can be Fourier transformed. In this work the 2-d discrete 

Fourier transform has the form 
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M N M N


 

 

  
    

  
    (2.5) 

and the inverse is 

    
1 1

0 0

, , exp 2

M N

u v

ux vy
g x y G u v i

M N


 

 

  
   

  
  .  (2.6) 

An initial guess of the image 0
g  is formulated. The image k

g  at iteration k  is Fourier 

transformed to arrive at its representation in the Fourier domain k
G . The Fourier domain 

pixel-wise magnitude is constrained to the given, measured value F  giving  

   ' exp arg .
k k

G F i G   (2.7) 

The result contains the phase value from the image and the measured modulus values. This 

result is inverse Fourier transformed back to the image domain yielding 
i

g  . Some region 
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of the image   is known a priori to be background, i.e. zero pixel values, and the image 

pixels are real and positive. This knowledge is applied via the constraint  

  
   

1

' , , ,  
,

0, otherwise

k

k

g x y x y
g x y




 
 


  (2.8) 

which gives the image for the next iteration. 

 

 

 
Fig. 13. Block diagram of the error-reduction method. 

 

 Fienup defined an error metric which quantifies the violations of the background 

nullity in the form [35] 

 

2

2

2
.

k

k

g d

e

g d



 
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  (2.9) 
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It can be shown that this error quantity cannot increase at each iteration which gives the 

method its name [34, 36].   

 Using Parseval’s theorem the Fourier domain error at iteration 1k   can be stated 

as 

 

22 2

, 1 1 1

2

1 1
.

F k k k

k k

E N G G d

g g d



  

 

 

 





x

x

  (2.10) 

Similarly, the image domain error at iteration k  can be stated as 

 

22

0 , 1

22

1
.

k k k

k k

E g g d

N G G d







 

 





x

x

  (2.11) 

Because the image is constrained in the transition from k
g   to 1k

g
 , it holds that  

 1 1 1k k k k
G G G G

  
      (2.12) 

which implies 

 
2 2

, 1 0 ,
.

F k k
E E


   (2.13) 

Using the equalities resulting from Parseval’s theorem in equations (2.10) and (2.11), this 

expression can be expanded to 

 
2 2 2 2

0 , 1 , 1 0 , ,
.

k F k k F k
E E E E

 
     (2.14) 

This expression shows the apparent convergence of the algorithm because the error cannot 

increase. The equalities, however, are the caveat. Experience shows that although the 

algorithm is typically convergent, convergence can take an impractical number of 

iterations. The algorithm is said to stagnate at local minima of this error metric which the 

equalities allow.  
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 To overcome the stagnation problems encountered by the ER method, Fienup 

devised some modifications to the method which culminated in the Hybrid Input-Output 

method (HIO). This method employs a feedback parameter   to push the pixel values in

  to zero without rigidly constraining them. The image constraint has the form 

  
   

     
1

' , , ,
,

, ' , , , .

k

k

k k

g x y x y
g x y

g x y g x y x y



 



 

 

  (2.15) 

In a diagnostic cases, the HIO typically outperforms the ER method. Given a proper 

estimate of   the HIO error will typically decrease more quickly than the ER error. A 

comparison between the ER and HIO is shown in Fig. 14 for a noiseless test case which 

shows that the HIO converges more quickly. Since the Fourier modulus data is noiseless, 

both converge to about the same error magnitude. 

 

 

 
Fig. 14. Comparison of the error in a test case of the ER and HIO on the 256x256 image of Saturn 

with noiseless Fourier modulus data. 
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 The HIO requires knowledge of the support of the true image, the region which 

has zero pixel values,  . The exact background region in practice is not known and must 

thus be estimated. There are several methods which can assist in this estimation. 

 Fienup, soon after developing the HIO, devised a method of estimating the support 

of the image from the support of its autocorrelation [37] but not uniquely [38]. He 

concedes if the support is estimated nearly exactly, the HIO will likely stagnate more often 

than if a conservative estimate is made in which the foreground is assumed larger than is 

actually is. He explains that if the partially converged image happens to be translated such 

that part of the foreground lies in   it will be clipped which will cause stagnation. He 

suggests that leaving the foreground larger than needed typically provides the best 

convergence rates. He later stated that the autocorrelation is more useful for defining an 

initial guess of the image rather than the support region. In [38] he says to take the 

autocorrelation, decrease its size by a factor of two, threshold the values, and multiply by 

a uniform random number. This would define an initial image for the HIO and the 

threshold would give a conservative estimate of the   region. 

 Another method of determining the support region was proposed by [39] which 

adapts to the image at each iteration. The algorithm blurs the image and determines   

based on a threshold of the blurred image. The threshold is slowly decreased with 

subsequent iterations until the image is adequately reconstructed. An advantage to this 

type of estimation lies in the existence of multiple foregrounds. This can be advantageous 

in many fields such as crystallography, x-ray imaging, and astronomy. 
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 It has been shown that the HIO method’s performance can be theoretically 

quantified based on the size of the background region. This can be called the amount of 

‘over sampling.’ With the definition of the ratio 

 
total pixel number

unknow n-valued pixel num ber
  , (2.16) 

the HIO can be shown to be convergent in theory for 2   in each dimension of the 2-

d image or 2   for the entire image [40]. This requirement imposes constraints on the 

non-linear system in equation (2.3), i.e. some pixel values in the system are known to be 

zero. It is also shown in [40] that oversampling aides in handling noise in the Fourier 

modulus data as will be investigated later. 

 In practice the Fourier modulus data contains some amount of noise. A model of 

this noise, 

           1 2
, , , 1 0, 0,

True
F u v F u v F u v N N i       , (2.17) 

corrupts the true Fourier modulus with Gaussian noise of standard deviation   and scaled 

by the true modulus [1]. It should be noted that the two Gaussians,  1
N   and  2

N   are 

statistically independent. This noise model is based on that used in intensity correlation 

interferometry when analyzing the statistics of the coherence magnitude measurements 

based on the Hanbury Brown and Twiss work [41, 42]. The model is similar to those used 

in [35, 38, 43, 44, 45]. With the addition of Fourier modulus noise with 0.05  , the HIO 

achieves about an order-of-magnitude smaller error than the ER achieves as shown in Fig. 

15. With larger amounts of noise, however, the HIO error oscillates and does not converge 
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[1]. This oscillation behavior will be further explained in the next section. This shows the 

necessity for a means of filtering the noise to achieve convergence.  
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Fig. 15. Comparison of the error in a test case of the ER and HIO on the image of Saturn with noisy 

Fourier modulus data, 5%. 

 

 

 
Fig. 16. Result of the HIO in a test case on the image of Saturn with noisy Fourier modulus data, 

25%. 
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2.2. Phase Retrieval Algorithm Comparisons 

 While the HIO developed by Fienup is the field standard for comparison, many 

other algorithms have been proposed which build upon the HIO. A somewhat 

comprehensive list and comparison was performed by Marchesini [46]. His article follows 

the projection notation as used by some authors. This notation compactly represents an 

iteration of the algorithm using operators which can be nested. To introduce the notation 

the Error-Reduction method will first be shown followed by the rest of Marchesini’s list 

plus some others. 

 As previously explained, the error-reduction method takes an image, Fourier 

transforms it, constrains the Fourier domain modulus, inverse Fourier transforms the 

image, and constrains some portion of the image to arrive at the next iteration’s image. 

Each step of this process can be expressed as a projection operation. The image is denoted 

by  ,g x y  and its Fourier domain is denoted by  ,G u v . The Fourier domain modulus 

constraint can thus be expressed as 

          , , , exp arg ,
k m k k

G u v P G u v F u v i G u v     (2.18) 

where  ,F u v  is the known magnitude. This operator can be combined with the Fourier 

transform mapping FT  such that the operation m
P  takes an image, Fourier transforms it, 

constrains the magnitude, and inverse Fourier transforms it. This gives 

 
1

.
m m

P FT P FT


   (2.19) 

Similarly the image domain constraint can be formulated as 
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    
     

1

, if , ,
, ,

0 otherwise.

k

k s k

g x y x y x y
g x y P g x y




 
  



  (2.20) 

Combining these two operators gives a complete iteration of the error-reduction method 

as 

    1
, , .

k s m k
g x y P P g x y


   (2.21) 

Most of the phase retrieval methods can be expressed in this notation although some can 

be difficult to understand in the projection notation as opposed to the pixel-wise notation. 
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Table 1. List of projective phase retrieval algorithms. 

Algorithm Iteration   

Error Reduction (ER) 1k s m k
g P P g


   

Solvent Flipping (SF) 1k s m k
g R P g


   

Hybrid Input-Output (HIO) 
 

   
1

,

,

m k

k

m k

P g x y
g

I P g x y



 


 
 

 
  

Different Map (DM)     1
1 1

k s s m s m m s m k
g I P P I P P I g     


               

Averaged Successive Reflection (ASR)  1

1

2
k s m k

g R R I g

   

Hybrid Projection Reflection (HPR)     1

1
1 1

2
k s m m m k

g R R P I P g 


      
 

 

Random Averaged Alternating Reflector 

(RAAR) 
   1

1
1

2
k s m m k

g R R I P g 


 
   
 
 

 

Levi-Stark method    1
1

k k s m k
G G FT P P g 


     

 

 

Table 2. Projection operators used in phase retrieval methods. 

Projection Formula  

Image support constraint  

 

1 ,

0 ,
s

x y
P

x y





 
 



  

Fourier modulus constraint 
     1

, exp arg ,
m k

P FT F u v i G u v FT
  
 

 

Image support constraint reflector 2
s s

R I P   

Fourier modulus constraint reflector 2
m m

R I P   
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 Shown in Table 1 is a list of phase retrieval algorithms stated in terms of the 

projections listed in  

 

Table 2. This first method not discussed yet is the Solvent Flipping [47] algorithm which 

has the iteration  

 1
.

k s m k
g R P g


   (2.22) 

Expanding the operators as  

    
1

  1, if , ,

1, otherwise
k k

x y x y
g g




  
  

 

  (2.23) 

helps to see the correlation with the error reduction method. The comparison is most 

evident when the projections are viewed in a graphical representation of the domains and 

projections as shown in Fig. 17 and Fig. 18. These examples show a two degree-of-

freedom case where the two dimensions ( x  and y ) are analogous to two pixels in an 

image. The Fourier transform operators in the m
P  projection has no visible effect in these 

visualizations. The figure shows the domain S  which satisfies the image support 

constraint and the domain M  which satisfies the Fourier modulus constraint. This 

formulation of the phase retrieval problem can employ ideas from fields unrelated to phase 

retrieval, such as the von Neumann algorithm in set theory [48], because the problem is 

reduced to finding the intersection of two sets [49].  

 Each of the phase retrieval methods can be graphically represented in the 2D 

fashion shown in Fig. 17. All of the subsequent visualizations for the phase retrieval 

methods discussed here are presented with the same scaling. Since the Cartesian 
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coordinates are meaningless, however, numerical ticks marks are not shown on the plots 

and units are not shown. 

 
Fig. 17. Visualization of the Error Reduction method’s domains and projections [39]. 
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Fig. 18. Visualization of the Solvent Flipping method’s domains and projections [39]. 

 The error reduction method starts with an initial guess that satisfies neither 

constraint, projects onto the modulus domain, and projects back onto the support 

constraint domain. The resulting image, 1
g , is closer to the intersection of the two 

domains than the initial guess. Each successive projection yields a result closer to the 

intersection than the previous result.  

 The solvent flipping method follows similar projections except the projection from 

the modulus domain overshoots the support domain and lands on a reflection of the 

modulus domain. The benefit is a larger step is taken toward the intersection of the two 

domains. The convergence is thus faster for the SF than the ER. 
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 At first glance in the pixel-wise formula, the HIO appears to have a very similar 

form to the ER. In the projection form, however, they are very different. Firstly, an exact 

projection onto the support domain is never made. Rather, a step is taken of the form 

 
 

   
1

,

, .

m k

k

m k

P g x y
g

I P g x y



 



 

 

  (2.24) 

Secondly, after the projection onto the Fourier domain a split occurs. A portion of the 

image is projected onto the support domain and a portion is projected onto a space S  

orthogonal to the support domain as shown in Fig. 19a. The two projections—one onto 

the support domain and one onto the domain orthogonal to the support domain—determine 

components of the final image. In the figure, these are represented as the horizontal and 

vertical components. The overall progress shown in Fig. 19b shows that a spiral is formed 

around the intersection of S  and M . The spiral somewhat explains the behavior seen 

previously in which the HIO oscillated between satisfying the modulus and the image 

constraints in the presence of noise. The spiral turns into a circle around the intersection 

for some noise levels. For higher noise levels the algorithm does not converge. The effect 

of noise will be discussed further later. 
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Fig. 19. Visualization of the HIO iteration projections and overall projection progress. 
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 The Difference Map (DM) algorithm is the culmination of several simpler 

algorithms which are applied to the phase retrieval problem which has the form  

     1
1 1 .

k s s m s m m s m k
g I P P I P P I g     


            

  (2.25) 

The parameters s
  and m

  are 
1

s
 


   and 

1

m
 


  to achieve the optimal step [50]. 

A visualization of this method is shown in Fig. 20. It has very slow convergence and 

spirals many times. 

 

 

 
Fig. 20. Visualization of the Difference Map method’s domains and projections. 
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 The Averaged Successive Reflections (ASR) method performs the ER projections 

but reflects them and averages the resulting image with the original image in the iteration. 

Explicitly the method has the form 

  1

1
.

2
k s m k

g R R I g

    (2.26) 

The visualization of the projections are shown in Fig. 21. The solid lines show the 

projections s m
R R  . The dotted line shows the region between the original image of the 

iterations and the projected image which are averaged yielding the new iteration on the 

center of the dotted line. As the iterations continue the image will make a spiral towards 

the intersections of M  and S  in a similar fashion as the HIO. 

 

 

 
Fig. 21. Visualization of the Averaged Successive Reflections method’s domains and projections.  
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 The Hybrid Projection Reflection (HPR) algorithm, 

     1

1
1 1

2
k s m m m k

g R R P I P g 


      
  , (2.27) 

is based on the ASR but includes a relaxation with the parameter  . The relaxation helps 

to increase the convergence rate by forcing the spiral inwards faster. A typical value for 

  is about 0.9. This algorithm is a special single parameter relaxation of the DM 

algorithm [51]. Fig. 22 shows the HPR projections with an exaggerated   of 0.3 to 

clearly show the comparison of the convergence with the ASR. 

 

 

 
Fig. 22. Visualization of the Hybrid Projection Reflection method’s domains and projections.  
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 The Relaxed Averaged Alternating Reflectors (RAAR) algorithm, 

    1

1
1

2
k s m m k

g R R I P g 


 
   
 
 

, (2.28) 

is based on the HPR [51]. The authors show some analytical justification for the RAAR 

which is not available for the HIO, HPR, or DM. Although the RAAR is based on the 

HIO, HPR, and DM, its projection takes a quite different path as shown in Fig. 23. The 

RAAR has much faster convergence properties than its predecessors. While the HIO is 

considered the basis for comparison in current literature, the RAAR appears to provide the 

most favorable and flexible performance of the phase retrieval methods listed here. 

 

 

 
Fig. 23. Visualization of the Random Averaged Alternating Reflections method’s domains and 

projections.  
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 In a similar fashion as the example in [46], these algorithms can be compared side-

by-side by giving all the same initial condition and comparable parameters. In Fig. 24 all 

of the methods have 0.9  . Shown are the two linear domains S  and M  which 

intersect. The ER and SF exhibit the expected straight line behavior whereas the others 

spiral to the intersection. Fig. 25 shows the distance of each method from the origin at 

each iteration. The SF and ER typically show the fastest convergence; however, 

performance of each algorithm changes based on the parameters and initial conditions. A 

general trend thus cannot really be determined. 

 The previous comparison gives insight into the performance of the algorithms, 

however, the example shows an ideal case. In the phase retrieval problem the modulus 

domain is a non-convex set, so to easily visualize the constraint consider two semi-circles 

as shown in Fig. 26 [46]. The methods start near a local minimum. The ER, SF, RAAR, 

and Levi-Start methods stagnate at the local minimum, whereas the other methods are able 

to find the global minimum—the intersection. The DM shows an oscillation when 

transitioning from escaping the local minimum to approaching the global minimum which 

sometimes reveals an instability. It often stagnates in the oscillation far away from the 

intersection. Once the methods get close to the intersection, the spiral behavior appears as 

occurred in the linear domain case. 

 The previous examples neglected the positivity constraint which exists in the phase 

retrieval problem. If the support set imposes a constraint both in the vertical and horizontal 

axes, the algorithm’s behavior changes slightly as shown in Fig. 27a. This is analogous to 

how the s
P  operator imposes both finite support and positivity. The methods converge 
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slightly faster with the positivity constraint than without as shown in in Fig. 27b. Fig. 28 

shows how near the intersection the trajectories follow spiral patterns similar to those 

shown in Fig. 24. 
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Fig. 24. Comparison of projective algorithms seeking the intersection of linear, intersecting domains. 

Markers are placed every 10 iterations on each path. (The HIO and HPR methods overlap.) 
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Fig. 25. Relative error, distance from intersection, of the comparisons in Fig. 24. 
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Fig. 26. Comparison of projective algorithms seeking the intersection of a non-convex domain and 

an intersecting linear domain. 
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Fig. 27. Comparison of projective algorithms seeking the intersection of a non-convex and an 

intersecting linear domain with a positivity constraint.  
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Fig. 28. Zoomed view of the intersection in Fig. 27. 
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3. THE CONSTRAINT RELAXATION ALGORITHM 

 Many phase retrieval methods have been developed with the intent of escaping 

local minima and finding the intersection of the Fourier modulus and image support 

domains. Not much attention, however, has been placed on filtering noise from the Fourier 

modulus data. As discussed previously, referring to equation (2.17), the noise in the 

Fourier modulus can be modeled as 

           1 2
, , , 1 0, 0, .

True
F u v F u v F u v N N i         (3.1) 

The difference between  ,F u v  and  ,
True

F u v  is enough to make the Fourier modulus 

and image support domain not intersect, and it was shown in Section 2.1 that phase 

retrieval algorithms are sensitive to this discrepancy. A rare few phase retrieval algorithms 

consider the noise issue directly. 

 The method developed by Levi & Stark allows the modulus constraint to drift with 

each subsequent iteration [52]. Instead of constraining the Fourier modulus to the given 

 ,F u v  they use the form 

        1 1
, 1 , , .

k k k
G u v G u v G u v 

 
     (3.2) 

This method however has been observed to either diverge or become trapped at local 

minima. Kohl developed a method where the measured Fourier modulus,  ,F u v  is 

mixed with the current iteration’s Fourier modulus in the form 

            , 1 , , exp arg ,
k A k A k

G u v G u v F u v i G u v       (3.3) 
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where 
A

  is randomly varied at every iteration [53]. This method has the effect of filtering 

some amount of noise; however, it was not developed with this intent. Because of the 

random quantity, it is difficult to analyze or give a clear rationale for its behavior. Liu 

developed a method where the noise is filtered by accurately knowing the statistics of the 

noise [43, 54]. While this method gives a unique rationale based on filtering the noise, its 

effectiveness is questionable because of the need to estimate the noise in the modulus 

quantitatively. Its performance has also not been observed to be more favorable than the 

original HIO method. 

3.1. Effects and Filtering of Noise in Phase Retrieval 

 To gain insight into the effect noise has on iterative phase retrieval consider the 

noisy Fourier modulus 

        
 ,

, , , , .
True

a b

G u v F u v a b u a v b       (3.4) 

This noise model places a perturbation of magnitude   at the location  ,a b . Note that  

      , , , .
True

u v F u v F u v     (3.5) 

This noise model and the following analysis are general in the sense that the statistics of 

  do not need to be specified.  

 Due to the linearity of the Fourier transform, during transformation the  ,a b  

terms are independent of each other and independent of the image data True
F . The effect of 

each  ,a b  term can thus be analyzed separately so let  ,a b   . In the general 

iterative phase retrieval algorithm shown in Fig. 13,  
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    , , .G u v u a v b       (3.6) 

If the image has extent  0, 1x M   and  0, 1y N  , the inverse Fourier transform is 

  , exp 2 .
ax by

g x y i
M N M N


   

    
  

  (3.7) 

Next, in the general algorithm an image constraint is applied. Namely, the pixels are real 

valued, positive, and have finite support. If the foreground of the image is a distance A  

from the left and right and a distance B  from the top and bottom, the image has nonzero 

pixels for  , 1x A M A    and  , 1y B N B   . The constrained image is thus 

 

 
 , 1  &  1

,
0 otherw ise

1 1  &  1

0 otherw ise.

g x y A m M A B n N
g x y

A m M A B n N

M N

        
 


      
 



  (3.8) 

The discrete Fourier transform of this expression is 

 

 
2 1 2 1

, exp

2 2
sin sin

.

sin sin

M A N B
G u v i u v

M N M N

M A N B
u v

M N

u v

M N



 

 

       
   

  

    
   
   


   
   
   

   (3.9) 

This equation may seem unexpected considering it is the Fourier transform of a rectangle 

function which normally is a product of sinc  functions; however, this is a discrete Fourier 

transform which gives the Dirichlet or “periodic sinc” function [55]. This analysis took 

the image data from just after constraining the Fourier modulus which contained noise to 
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just before applying the modulus constraint again. The goal here is to determine how to 

best apply the modulus constraint such that some of the contribution of   is removed. 

 Since equation (3.9) is difficult to analyze, consider its maximum magnitude 

  
2 2

0, 0
M A N B

G
M N

 
  . (3.10) 

This shows that regardless of the location of the noise in the  ,u v  plane its largest 

contribution after one iteration is at the origin. The effect of the noise at  ,a b  influences 

all pixels in the  ,u v  plane; however, the overall influence is less than before the 

iteration. This is evident from the Frobenius norm of equation (3.9) which is 

 

 
1 1

2
2

0 0

1 1

0 0

2

2

,

2 1 2 1
exp

2 2
sin sin

                            

sin sin

2 2
,

M N

u v

M N

u v

e G u v

M A N B
i u v

M N M N

M A N B
u v

M N

u v

M N

M A N B

M N



 

 

 

 

 

 



       
   

  

    
   

    
   

    
    

 
 

 

 

  (3.11) 

whereas the Frobenius norm before the iteration was 2 2
e   . The amount of oversampling 

thus determines the amount of filtering.  

 To demonstrate this graphically these equations are plotted for a simple test case 

consisting of a single non-zero pixel in the  ,u v  plane. Fig. 29a shows the initial Fourier 

modulus with a single pixel containing noise of magnitude  15 1   . Fig. 29b shows 
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the inverse Fourier transform which is the unconstrained image. The image has a uniform 

magnitude of 0.02 and a periodic phase factor. The constrained image in Fig. 29c has 

support with 10A   and real, positive pixel values. The Fourier transform of the 

constrained image, Fig. 29d, shows the new form of the noise. The greatest magnitude is 

0.6 which equals 
2 50 2 10

50

M A

M

  
 . The square root of the sum of all of the modulus 

values, the Frobenius norm, is 0.7746 which equals 
2M A

M


.  
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Fig. 29. Example of the Error Reduction algorithm’s filtering effect through one iteration of the 

error-reduction algorithm. 
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 Based on this insight, the conclusion can be drawn that the Fourier modulus after 

an iteration,  1
,

k
G u v


 is a better estimate of the true Fourier modulus  ,

True
F u v  than 

the measured noisy modulus data  ,F u v . This implies that the measured modulus data 

should be mixed with the current iteration’s modulus to obtain the best estimate of the true 

modulus. This leads to the idea of imposing the Fourier modulus constraint in the form 

            , , 1 , exp arg ,
k k k

G u v G u v F u v i G u v       (3.12) 

which is referred to as the Constraint Relaxation (CR) method [1]. Compared to the Levi-

Stark method, equation (3.2), the modulus is constrained to stay near  ,F u v  and is thus 

less likely to diverge. Compared to Liu’s method, equation (3.3), the filtering effect is 

more stable because the relaxation parameter is not changing at every iteration. The 

modulus constraint in (3.12) can be written as a projection 

 

   

       

1
, ,

1 , exp arg ,

  

m
P g x y FT FT g x y

F u v i FT g x y





    

    
  (3.13) 

and combined with any of the phase retrieval methods discussed in section 2 to get the 

benefits of escaping local minima and filtering the Fourier modulus of noise. As an 

example the trajectory of the HIO seeking the intersection of the linear support and Fourier 

domains is shown in Fig. 30. The first figure shows the normal HIO where each iteration 

projects to the Fourier domain whereas the second figure shows the HIO with constraint 

relaxation where the projection does not go completely to the Fourier domain. This is 

apparent in the early iterations by looking at the diagonal projection paths. The result is 



63 

 

less spiral tendency which means less oscillation between the constraints. Convergence 

also occurs more quickly. This will be explored further in the next section. 
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Fig. 30. Comparison of the HIO projections with and without constraint relaxation. Intermediate 

projections are denoted by the thin and dashed lines. 
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3.2. Comparison with Existing Methods 

 The Hybrid Input-Output method is the typical standard for comparison since most 

methods of phase retrieval have their origins in the HIO. The HIO-CR method will thus 

be compared with the HIO first and finally to the other methods of phase retrieval 

developed for noise filtering. In the comparison an image of a fictitious satellite is 

considered which has approximately half of the pixels in the background. The foreground, 

the area not in  , is assumed to be a slightly larger rectangle than the area consumed by 

the true foreground. The Fourier modulus is corrupted by noise with standard deviation 

0.4 in the model in equation (2.17). This case has a lot of noise and typically the HIO’s 

result is incomprehensible. The true image and the   region used are shown in Fig. 31a. 

As is typical for the HIO, with the high level of noise an oscillation occurs between 

satisfying the modulus constraint and satisfying the image constraint. The modulus and 

image domain errors defined by equations (2.10) and (2.11) are shown in Fig. 32 and Fig. 

33 respectively. 
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Fig. 31. The true image of the fictitious satellite and the estimated image after 500 iterations using 

the HIO. 

 
Fig. 32. Modulus constraint violations at each iteration for the HIO in the presence of noise. 
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Fig. 33. Image constraint violations at each iteration for the HIO in the presence of noise. 

 After the 500 iterations of the standard HIO algorithm, the HIO-CR constraints 

were implemented for an additional 500 iterations with 0.9  . The image estimates 

before starting the CR and after the 500 iterations are shown in Fig. 34. The result has a 

much better resemblance to the true image. Not only is the background darker due to the 

image constraint, the foreground is much clearer due to filtering the noise. The reduction 

in the modulus constraint violations, Fig. 35, shows that approximately 75% of the noise 

was filtered. The image constraint violations, Fig. 36, always go to nearly zero for this 

method. This is because the modulus filtering both removes noise and adapts the modulus 

to satisfy the image constraint. The most notable effect of the CR method is its effect on 

the absolute Fourier modulus error defined by 

    
2

2 2
, ,

k true k
E N F u v G u v dudv

   
    (3.14) 
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as shown in Fig. 37. This metric reveals that the initial modulus data has relative error of 

2 and after the relaxation the relative error is slightly under 1. Over 50% of the noise 

according to this metric is filtered. A typical behavior for this error metric is a spike when 

the CR is initially implemented. The spike only consists of the single iteration after the 

relaxation starts. The spike can be eliminated by slowly increasing   from zero to the 

desired value. In experience with this method so far, the spike has proven to be benign. 

Based on these results, the CR-HIO combination proves to be an improvement over the 

HIO alone. 
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Fig. 34. The image of the fictitious satellite after 500 iterations using the HIO (a) and after an 

additional 500 iterations using the CR-HIO method (b). 

 
Fig. 35. The modulus constraint violations both before and after the CR is implemented. 

a) Estimate, Iteration 500 b) Estimate, Iteration 1000

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

Iteration

M
o
d
u
lu

s
 C

o
n
s
tr

a
in

t 
V

io
la

ti
o
n



70 

 

 
Fig. 36. The image constraint violations both before and after the CR is implemented. 

 

Fig. 37. The absolute Fourier modulus error both before and after the CR is implemented. 
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 The previous example showed the image of a fictional satellite being reconstructed 

from its noisy Fourier modulus. To demonstrate the relaxed constraint method with a more 

realistic image, consider the image of Saturn in Fig. 38a. The Fourier modulus is corrupted 

according to equation (3.1) in the same manner as the previous example with standard 

deviation of 0.4. The HIO was run without the constraint relaxation for 500 iterations, and 

the results are shown in Fig. 38b.  

 The relaxation was again performed from iterations 500 to 1000 as shown in Fig. 

38c. The oscillation and then reduction in the image constraint error is shown in Fig. 39. 

The reduction in the modulus error is shown in Fig. 40 where the total reduction is about 

63%. The background region is nearly completely devoid of artifacts. The foreground is 

improved slightly, as shown by the planet’s rings and silhouette being sharpened. The 

improvement of the foreground is not significant; however, the image is suffering from 

the convolution of the proper and flipped image. This is evident from the rings not being 

shown in front of the planet. Through methods such as those in [56, 57, 58, 59, 60] this 

can be corrected. Even with the flipped solution convolution, the Fourier modulus noise 

reduction was about 58%. With the addition of methods of obtaining a unique solution—

which is beyond the scope of the discussions here—even more filtering is possible. It is 

proposed that algorithms such as those in [56, 57, 58, 59, 60], which better manage the 

flipping convolution and support issues, would provide far superior results if  1000
,G u v  

were used as an input rather than  ,F u v , because the issue of conflicting image domain 

and Fourier domain constraints is nearly eliminated. 
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Fig. 38. Example result showing (a) the true image and (b) the reconstructed image after 500 

iterations without constraint relaxation. The relaxation was performed from iteration 501 to 1000 

with the result shown in (c). The box in (b) and (c) indicates the boundary of the background region. 

 

 

 

Fig. 39. The image constraint violations vs. iteration for the Saturn example. 
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Fig. 40. The Fourier modulus error vs. iteration for the Saturn example. 
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 To analyze the performance of the Constraint Relaxation projection in the 

algorithms shown in section 2, consider again the two degree-of-freedom case where the 

projections can be visualized. The support domain is defined as  

   S= , | x 0, y 0x y     (3.15) 

The modulus domain is defined as a non-convex domain consisting of two semicircles. 

The addition of noise in the Fourier modulus data can be interpreted as a change in the 

modulus domain. Here for simplicity the modulus domain will be translated such that the 

two domains do not intersect and a gap exists [1, 43, 54]. In these examples the algorithm 

starts at    , 2.5, 0x y   which is near a local minimum. 

 Fig. 41 through Fig. 44 show the various phase retrieval methods discussed in 

section 2.2. Fig. 41 has a clear intersection between the two domains. The ER, SF, and LS 

methods converge to the local minimum. The rest of the methods travel away from the 

local minimum in a direct normal to the modulus domain until the normal to the modulus 

domain at the intersection is crossed. After crossing the line normal to the intersection 

point the trajectories travel towards the intersection. In Fig. 42 the case is shown where 

the two domains graze each other but to not cross. In this case the RAAR converges; 

however, the HIO, DM, ASR, and HPR methods stagnate at an improper y  value when 

they achieve the proper x  value. Fig. 43 shows the case where the two domains do not 

intersect. The gap is 0.05 units at the minimum separation. Only the RAAR does not 

diverge or converge to the local minimum. The RAAR converges to a point near the global 

minimum separation. The exact stagnation distance from the global minimum is 

proportional to the size of the gap. Fig. 44 shows the case where the gap between the 
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domains is large. As shown, the gap is 0.5. In this case all of the methods diverge or 

converge to the local minimum. 

 As mentioned with the rationale for the relaxed modulus projection in equation 

(3.13), the relaxation parameter   should be increased cautiously to prevent forcing the 

trajectory to converge to a local minimum. In the examples shown in Fig. 45, Fig. 47, and 

Fig. 48 the relaxation parameter is defined according to the iteration number k  as 

  

0, 25

25
0.9 , 25 50

25

0.9, 50.

k

k
k k

k








  




  (3.16) 

Fig. 45 shows the case where the two domains clearly intersect as also shown in Fig. 41. 

Comparing the region near the intersection, Fig. 46, reveals that the spiral behavior is 

eliminated. This means the oscillation between imposing the support constraint and the 

modulus constraint discussed previously has been eliminated. Fig. 47 shows the same case 

as shown in Fig. 42 where the two domains graze each other. Without the constraint 

relaxation the trajectories for several of the methods stagnate. With the relaxation 

implemented all of the methods either converge correctly or converge to the local 

minimum. With the same parameters as previously used for the case where the domains 

had a large separation, no method diverges as shown in Fig. 48. All of the methods except 

the ER, SF, and LS converge to the point on the support domain with the minimum 

distance from the modulus domain. If the relaxation parameter is non-zero before the 

trajectories move away from the local minimum, all of the trajectories converge to the 

local minimum as shown in Fig. 49. 
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Fig. 41. Phase retrieval algorithms seeking the intersection of a non-convex domain and an 

intersecting linear domain. 

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration

b) Distance from the global minimum.

E
rr

o
r

-1 0 1 2 3 4

-1

0

1

2

3

4

5  

S

M

a) Algorithm Trajectories

 

ER

SF

HIO

DM

ASR

HPR

RAAR

LS



77 

 

 

Fig. 42. Phase retrieval algorithms seeking the intersection of a non-convex domain and an 

intersecting linear domain. The two domains only graze each other. 
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Fig. 43. Phase retrieval algorithms seeking the intersection of a non-convex domain and a non-

intersecting linear domain. The minimum separation is 0.05. 
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Fig. 44. Phase retrieval algorithms seeking the intersection of a non-convex domain and a non-

intersecting linear domain. The minimum separation is 0.5. 
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Fig. 45. Phase retrieval algorithms with the relaxed constraint seeking the intersection of a non-

convex domain and an intersecting linear domain. 
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Fig. 46. Zoomed view of the intersection in Fig. 45. 
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Fig. 47. Phase retrieval algorithms with the relaxed constraint seeking the intersection of a non-

convex domain and a non-intersecting linear domain. The two domains only graze each other. 
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Fig. 48. Phase retrieval algorithms with the relaxed constraint seeking the intersection of a non-

convex domain and a non-intersecting linear domain. The minimum separation is 0.5. 
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Fig. 49. Phase retrieval algorithms with the relaxed constraint seeking the intersection of a non-

convex domain and a non-intersecting linear domain. The relaxation parameter was set to a non-

zero value too soon. 
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 The goal here was to devise a modification to the traditional phase retrieval 

methods that not only tolerates noisy modulus data but is capable of filtering the noise. 

Filtering the noise was set as a goal to eliminate the oscillations in the image and Fourier 

domain errors and help prevent stagnation. To develop a theoretical basis for the filtering 

scheme, the effect that noise has on an iteration of the Error Reduction method was 

derived. This analysis showed that noise could be filtered by carrying the effect of an 

iteration on the Fourier modulus over to the subsequent iteration. This result led to the 

development of the relaxed constraint projection operator. With the addition of the 

relaxation, the Frobenius norm of the error in the modulus data has been reduced by as 

much as 92% for noise levels high enough that the HIO alone was barely able to converge. 

 For comparison, the satellite example given here was run with various initial 

conditions and noise realizations using the method proposed in [54]. The resulting 

modulus error was reduced by at most 5% with an average reduction of 1%. The algorithm 

in [54] aides in convergence in the presence of noise but has not been shown as effective 

at filtering high amounts of noise in two-dimensional images. The algorithm proposed in 

[44] manages to filter some of the modulus noise by imposing a condition on the modulus 

based on the image’s support. Namely, they rely on the image being largely oversampled. 

The algorithm presented here has no such requirement. In fact, the satellite image is under-

sampled; the autocorrelation extends beyond the measured  ,u v  domain. Large 

oversampling improved the performance here; however, it is not a requirement. 

 The phase retrieval methods presented in [46], [52], and [53] were shown to be 

similar to the algorithm presented here. These algorithms have complex projection 
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operators and have complex theoretical function minimization derivations and are shown 

to aide in eliminating local minimum induced stagnation. They, however, are not 

formulated to filter noise. The constraint relaxation by [52] is susceptible to instability 

when noise is present. In tests, it was observed to deliver comparable noise reduction to 

the method presented here if the algorithm did not go unstable. At high noise levels, it was 

rare for the algorithm to not go unstable. For the satellite example used here, the noise 

reduction was only 32% using [52] opposed to the 62% consistently observed using the 

constraint relaxation method presented here. Even when high levels of noise cancelation 

occurred, the filtering was still temporary. The error typically was decreased sharply when 

the relaxation was first implemented, and afterwards the error would steadily grow. 

 The relaxation method proposed in [53] performed very well with noiseless data 

but was never shown to exceed the noise cancelation seen by the constraint relaxation 

presented here. Due to the randomization of the relaxation, the noise reduction drastically 

varied at every iteration. The noise reduction could possibly be as high as the reduction 

for the algorithm presented here, but unless the iterations were stopped when the random 

relaxation value was optimal, the noise reduction was small or the noise was made worse. 

These results reinforce our claim that the algorithm presented here is intended to filter 

noise where others do not have this intended purpose. 

 Other papers such as [39], [40], and [61] discuss noise levels with respect to phase 

retrieval. The algorithm proposed here differs from these in that not only is the algorithm 

able to converge in the presence of a low SNR level—as many do—, but the noise is 

actually filtered.  
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 In the examples presented here (among others we have tried), the modulus 

constraint relaxation provides superior results when compared to other methods of phase 

retrieval with noisy data. With this form of constraint relaxation combined with more 

complex methods of determining the image’s support and handling double images, phase 

retrieval surpassing the current state-of-the-field is possible. 
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4. PHASE RETRIEVAL USING GAUSSIAN BASIS FUNCTIONS 

 All of the phase retrieval methods discussed previously formulated an image as a 

rectangular discrete grid of numbers where each number is represented by a square pixel. 

Within this formulation, an image with more pixels within the grid will typically reveal 

more detail due to the higher resolution. Several limitations of this discrete, pixelated 

framework can be identified [3]. 

 A good image requires a large number of pixels; however, each iteration of the 

projective phase retrieval algorithms requires at least two discrete Fourier transforms. 

Each transform scales as logN N  for a dimension of the image having N  pixels. This 

scaling can be improved through various optimizations of the FFT method but all have 

unfavorable nonlinear growth. Additionally, due to the use of FFTs in the algorithms’ 

solutions, advancement towards a closed-form solution is virtually impossible. The term 

closed-form is used here to refer to a solution which is exact in the sense that an additional 

operation or iteration is either not possible or cannot yield more accuracy. Most of the 

phase retrieval methods based on the ER method have parameters for the user to adjust 

such as feedback parameters, relaxation parameters, support bounds, etc. Convergence of 

these algorithms is dependent upon proper use of these parameters which add “art” to the 

process. In a truly blind test there is no definitive, quantitative metric to describe an output 

as fully converged or not. It is possible for error metrics such as equations (2.10) and 

(2.11) to have favorable values even though the output image is completely unlike the true 

image. 
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 To overcome these difficulties with of the current methods of phase retrieval, the 

problem is reformulated here from the ground up. The underlying problem within all of 

the difficulties is the discrete representation of an image. The idea comes to mind: if a 

better image has a higher resolution, isn’t a perfect image continuous? Work has been 

done in the field of super resolution but the results do not fully address the concerns here 

[62]. In the following discussions the phase retrieval problem is reformulated such that an 

arbitrary image can have a continuous representation. 

 In this section the formulation of a continuous image is given and compared to 

existing methods of forming images. Next, characteristics of an image captured using 

optical apertures is analyzed and used to rationalize the continuous image formulation. 

Finally, based on these insights a phase retrieval method is introduced which makes use 

of a continuous framework and has a non-iterative solution. An example is shown and 

compared to existing phase retrieval methods. 

4.1. Pixels versus Gaussians 

 Since a perfect image within the traditional notion of a digital image would have 

infinite resolution, the perfect image should be thought of as continuous. The image pixel 

values can thus be a continuous function value in 2-d space. In practice the value of this 

continuous function is only known at discrete points in this 2-d space. If the function value 

is to be evaluated at any arbitrary position, the function value must be interpolated between 

the known points. Two of the most common methods in computer graphics for evaluating 

an image function value based on discrete known points are nearest-neighbor and bilinear 

sampling [63, 64, 65]. 
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 Nearest-neighbor sampling estimates the image function value at any arbitrary 

 ,x y  position as 

        ˆ , , ,  round ,  round
N N

I x y I i j i x j y     (4.1) 

where I  is the known function value at the integer coordinate  
2

,i j  . The function 

ˆ
NN

I  can thus be evaluated for  
2

,x y   based on limited knowledge of I  [66]. An 

example of this sampling method is shown in Fig. 50. Nearest-neighbor sampling is the 

simplest of sampling methods, and its form obviously reveals the notion of visually square 

pixels in an image. While this form is apparently uncritically used for all current work in 

phase retrieval, it is far from optimal when image quality is a concern. An analytical 

Fourier transform of an arbitrary  ˆ ,
N N

I x y  is far too cumbersome to use. Additionally, 

nearest neighbor sampling is known to the computer graphics community as the worst of 

the sampling methods and is typically only used because of its computational simplicity 

[66]. 

 Bilinear sampling performs four linear interpolations between the four nearest 

known function values. The estimated image function value is thus 
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     
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,

,

,
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I i j i x y j

I i j x i y j

   

   

   

   

  

  

  

  

  (4.2) 
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where  floori x

  and  ceilingi x


  and likewise for j   and y  [66]. To clarify the 

function  floor x , it means to round x  down to the nearest integer and  ceiling x  rounds 

x  up to the nearest integer. Bilinear sampling is superior to nearest-neighbor sampling in 

terms of the image quality to a viewer as shown in Fig. 50. The grid pattern is less evident 

because the function value is continuous across the grid boundaries; however, the slope is 

not continuous. Just as the nearest-neighbor method could be Fourier transformed, the 

function ˆ
BL

I  could be Fourier transformed but the result does not yield a convenient form. 

 A much less common image reconstruction technique is the Gaussian radial basis 

function (GRB) [67, 68]. This technique forms the continuous image function by 

superimposing two-dimensional Gaussians of various amplitudes and positions. The 

image function thus has the form 

       
2 2

2

1

1ˆ , exp
2

N

j j j

j j

I x y A x x y y


 
     

 
 

   (4.3) 

or in vector notation 

    
2

2

1

1ˆ exp .
2

N

j j

j j

I A  


 
   

 
 

   (4.4) 

This form only requires knowledge of the position  ,
j j j

x y   , amplitude j
A  , and size 

j
  of each Gaussian in the image. The Gaussians can be superimposed to represent an 

arbitrary shape as shown in Fig. 50 where six Gaussians located at  0,1, 2, 3, 4, 5x   very 

closely represent a sinusoid.  
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Fig. 50. Comparison of various interpolation methods used in imaging. 
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4.2. Gaussians in Imaging 

 The GRB was shown to be a viable interpolation/sampling method to convert 

between discrete data and a continuous function. The GRB image also lends itself well to 

imaging when using circular apertures such as telescopes. The point spread function for a 

finite circular aperture is  

  
 1

J
U C





   (4.5) 

where  1
J   is the Bessel function of the first kind and C  is a constant [69, 70]. The 

Bessel function of the first kind is defined as 

     
0

1
cos sin .

n
J n x d



   


    (4.6) 

The Airy pattern, which is the intensity of the point spread function, is thus 

  
 

 

2

2
12 2

jinc .
J

I C C


 


 
      

 

  (4.7) 

The jinc  function is often approximated as a Gaussian because the secondary oscillations 

in the jinc  function are small in magnitude compared to the central peak as shown in Fig. 

51. By this approximation the diffraction integral leads to a Gaussian which means the 

optical transfer function (OTF) is also approximately a Gaussian. Since the OTF is a 

Gaussian, an image viewed through a circular aperture is resolved as a GRB network. The 

GRB is thus a better approximation of an image viewed through a circular aperture than a 

moderately pixelated image [3]. An example of the fictitious satellite considered 
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previously formed using GRBs shown in Fig. 52. This image appears blurred as if the 

satellite were viewed through a small circular aperture. 

 
Fig. 51. Comparison of the jinc function to a Gaussian. 

 

 
Fig. 52. The fictitious satellite image formed with Gaussian radial bases. 
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4.3. Phase Retrieval Algorithm 

 The primary feature of a GRB image is it can be analytically Fourier transformed 

easily and in a compact form for an arbitrary number of Gaussians. The end goal here is 

to use the known points in the diffraction pattern of the light field from a source and 

interpolate the data to estimate the continuous diffraction pattern. If the information in the 

diffraction pattern is continuous, the phase retrieval can be performed in a continuous 

framework rather than discrete. With this goal in mind, the transformations of the image 

formed with GRBs must be derived. 

 The image composed of N  Gaussians is 

     
2

2

1

1
exp

2

N

j j

j j

I A  


 
   

 
 

   (4.8) 

where each Gaussian has the amplitude j
A , size j

 , and location j
 . The Fourier 

transform takes the form 

      2 2

1

2 exp 2 exp 2 .

N

j j j j

j

J u A iu u u     


       (4.9) 

For clarity, the Fourier transform convention used for this derivation is 

      exp 2 .J u I iu d   



     (4.10) 

In the phase retrieval problem based on interferometry, the squared magnitude of the 

Fourier transform, known as the squared coherence, is measured. The squared coherence 

is thus 

       2 2 2 2

1 1

2 exp 2 exp 2 .

N N

j k j k j k j k

j k

J A A u u iu         
 

         (4.11) 
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This expression reveals that the relative positions of the Gaussians, j k
  ,  appear in the 

squared coherence as frequency components. If these frequency components are 

identified, the relative position of each Gaussian can be determined. This is convenient 

since the frequency components within the squared coherence magnitude can be identified 

without making measurements over the entire  ,u v  domain. 

 A method of identifying the frequency components in the squared coherence 

magnitude data is to locate maxima within the Fourier transform of the data. This Fourier 

transform will be referred to as the “spectrum analysis”  Ĵ    to distinguish it from the 

Fourier domain  J u . The spectrum analysis is 

 

      

 

 

2

2

2 22 2
1 1

ˆ

2 exp .
2

N N
j kj k

j k

j k j kj k

J F J u

A A

 

   


   



  
  
 
 

 
  (4.12) 

The spectrum contains 2
N  Gaussians in the   space; however, the N  Gaussians 

corresponding to j k  are at the origin. There are, therefore,  1N N   Gaussians not at 

the origin. Looking closer, a useful property of the spectrum is revealed. Consider the 

value of k  to be constant. The entire image is contained within  Ĵ   with the j k  

Gaussian at the origin. The entire  Ĵ   thus contains the true image N  times with each 

copy of the image translated such that one of its Gaussians is at the origin. 

 Since the measured data that defines the squared coherence magnitude is typically 

discrete, the Fourier transform in the spectrum analysis definition can be performed as a 
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discrete Fourier transform. This form of the spectrum analysis would reveal maxima at the 

location of each Gaussian. The height of each maximum is equal to the product 

2 2

j k

j k

j k

A A
 

 
  and the size of the Gaussian at each maxima is equal to  2 2

j k
  . With 

the identification of each maximum location ˆ
n

 , the problem is thus to define j  and k  

consistently such that  

 ˆ
n j k

      (4.13) 

for each n . A problem can arise in identifying the maxima if two Gaussians in the spectrum 

overlap such that two Gaussians cannot be distinguished. In this case, rather than looking 

for maxima, fitting Gaussians to the spectrum with their position, size, and amplitude as 

variables could yield the correct result. If two Gaussians perfectly overlap, this method as 

documented here will fail. Therefore, based on this formulation some images cannot be 

reconstructed if they contain very many Gaussians. A slight modification can be added to 

address this issue, but it is unreliable and thus not discussed here. 

 Solving for the indices j  and k  such that equation (4.13) is satisfied for each n  

appears to be trivial; however, there are  1N N   possible combinations. The problem 

thus becomes overwhelming very quickly. For this reason the working algorithm shown 

here appeals to the geometric interpretation mentioned previously where the image is 

duplicated N  times in the spectrum with each instance translated. The algorithm 

identifies recurring patterns and eventually identifies each of the N  copies of the image. 
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 Fig. 53 below shows the steps of the algorithm which can identify the duplicated 

and translated instances of the sought image within the spectrum analysis. It begins by 

choosing two Gaussians and designating them as part of the master image. It then finds all 

places within the spectrum where the increment between the two master Gaussians occur. 

These N  occurrences are the beginnings of the N  instances of the image. One Gaussian 

is then added to the master image at a time. If each instance of the image can find a 

Gaussian such that all instances match, the added Gaussian is deemed correct. If not, a 

different Gaussian is chosen and added to the master image. The process continues until 

all of the Gaussians in the spectrum have been attributed to one of the N  images. 

 To graphically demonstrate the progression of this algorithm, consider the image 

shown in Fig. 54 which is simply four Gaussians. Its Fourier transform is shown in Fig. 

55. Fig. 56 shows the spectrum analysis resulting from the evaluation of equation (4.12). 

The thickest arrows show the development of the master image. The other styled arrows 

denote the development of the secondary duplicate image. Note that any of the translated 

instances of the images shown could be considered to be the master image depending upon 

the algorithm’s starting choice. 

 Once the individual Gaussians in the image are found, the image can be 

reconstructed using equation (4.8). The resulting image is continuous and has infinite 

extent. The image function can be sampled to create a grid of discrete pixel values for 

display. 
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Fig. 53. Gaussian phase retrieval flow chart. 

 
Fig. 54. Sample image formed from Gaussians used for the phase retrieval algorithm demonstration. 50 100 150 200 250
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Fig. 55. The analytical Fourier transform of the image in Fig. 54 

 
Fig. 56. Sample image spectrum analysis showing the progressive development of the four translated 

images. Each image has different line styles connecting the four Gaussians in the order that the 

algorithm identified the Gaussians. 
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4.4. Example 

 To demonstrate this technique of phase retrieval, consider the star cluster Pleiades 

shown in Fig. 57. For the sake of this example, the image was created such that it can be 

represented as a continuous function with nine Gaussians representing the nine main stars 

in the cluster. The measured squared coherence data in Fig. 58, sampled from the 

continuous Fourier transform of the image, has resolution of 1024x1024. The spectrum 

analysis shown in Fig. 59 is merely the discrete Fourier transform of this 1024x1024 array.  

 The spectrum was scanned to find all of the positions, widths, and amplitudes of 

the Gaussians which are then used in the phase retrieval algorithm. The resolution of the 

measured squared coherence data dictates the resolution of the spectrum which limits the 

accuracy when determining the positions of the Gaussians in the spectrum. This limited 

accuracy in turn limits the accuracy of the final image. The result of the Gaussian phase 

retrieval algorithm is shown in Fig. 60. The positions of the Gaussians in the final image 

are accurate to 1 2  pixel. 

 It is also worth mentioning that the HIO can be used to obtain the phase estimate 

for this image. The HIO with feedback parameter 0.9   and proper rectangular 

background constraints requires approximately 500 iterations to converge to nearly zero 

error. For this image with resolution 512x512, the stars are not well defined due to the 

pixilation. The reproduced image in Fig. 61 looks fine; however, upon closer inspection 

near one of the stars there is much distortion. A comparison is shown in Fig. 62 between 

the topmost star in the GRB image and HIO image. In the discrete HIO image the star is 

not perfectly round, and there is no clear metric for describing the radius of the star. The 
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Gaussian bases, however, give a clear metric: the standard deviation of the continuous 

Gaussian. Note that the GRB allows for a discrete image to be produced at any resolution 

because it is a continuous image. 
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Fig. 57. The Pleiades star cluster used as an example of GRB phase retrieval. This image serves as 

both the input to the phase retrieval algorithm. 

 
Fig. 58. The squared Fourier modulus of the Pleiades star cluster image represented as a 1024x1024 

array. 

True Image

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

True Image FT

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500



104 

 

 
Fig. 59. The spectrum analysis of the Fourier transform of the Pleiades image. 

 
Fig. 60. The estimated image of the Pleiades resulting from the Gaussian phase retrieval algorithm 

applied to the spectrum shown in Fig. 59. The continuous image is point sampled for display. 
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Fig. 61. 512x512 pixel result from the HIO method with a rectangular support region. 

 
Fig. 62. The topmost star in the (a) GRB and (b) HIO images as shown in Fig. 60 and Fig. 61 

respectively. 
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4.5. Conclusion 

 A notable benefit of using the spectrum analysis of the squared coherence data 

over directly inverse Fourier transforming, as is the case in the HIO method, is that the 

Fourier domain must only contain enough measurements to identify its frequency 

components. Traditional phase retrieval methods require either complete Fourier domain 

coverage via measurements or some kind of estimation of the missing data. There are 

potentially other methods of identifying these frequency components beyond the 

discussion here which may lead to more accurate results and can tolerate the overlapping 

frequency components as discussed earlier. An additional benefit of this spectrum analysis 

method is the inherent continuity of the image. As shown in the HIO results, pixilation 

can alter the apparent content of the image. In the example shown previously, due to the 

pixilation a round star doesn’t appear round, and the boundaries of the star are vague. 

 In practice the measured squared coherence data contains some amount of noise 

which causes a lack of smoothness in the Fourier domain. Because the Fourier transform 

of the coherence data is used to generate the spectrum, the smoothing effect of the Fourier 

transform helps to alleviate the effect of noise. Since this method of phase retrieval is in 

its infancy, no explicit noise analysis has been performed yet. 

 The method presented here builds upon the successes and shortcoming of prior 

research in the phase retrieval field but also takes a step back and approaches the problem 

from a new point of view. The properties of finite aperture optics and the continuity of an 

image viewed through a finite aperture lead to the Gaussian bases. The algorithm 

presented here employs a recursive scheme to find each Gaussian in the image based on 
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the pattern in the spectrum analysis. This algorithm is not iterative in the sense that there 

are a fixed number of recursions needed to resolve the image. This contrasts with the HIO 

method and other projective methods.  In these other methods a subsequent iteration can 

always be performed, and in theory every subsequent iteration gives a better estimate of 

the image. Here, once the correct pattern is found via recursion, a closed form equation 

relates the Gaussian locations in the spectrum analysis with the bases of the image.  
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5. RECOVERY OF ASTEROID SILHOUETTES BY STELLAR OCCULTATION 

 Stellar occultation in general refers to viewing an eclipse event of a star due to an 

astronomical body. In particular stellar occultation typically refers to using the occultation 

of a star to estimate some property of the occulter such as its size. Several successful 

estimates have been made of the radius of moons and Kuiper belt objects which are 

documented in sources such as [71, 72, 73, 74, 75]. The typical method involves several 

observers who record the timespan in which an object occults a specific star. Each observer 

has a known location on the Earth’s surface, thus the times of the occultation events can 

be used to estimate the ground track of the shadow cast by the occulter. By knowing the 

shape of the shadow, an estimate of the shape of the occulter can be devised. A schematic 

of the system is shown in Fig. 63. The major limitation of this approach is that it requires 

the object to cast a sharp shadow. In reality the edge of a shadow is subject to diffraction 

effect, thus in many cases no clear shadow exists. This is especially true for small, distant 

objects. Most recent research in the field of stellar occultation has focused on obtaining 

more precise estimates of the nominal radius of the occulter [76]. The discussions in [77] 

expand the circular estimate to include ellipses. The work presented here progresses 

beyond the estimation of simple geometric shapes. Here the general shape of an asteroid 

is estimated without a priori knowledge of the object’s shape. The discussions in this 

section are based on the work in [4]. 

 As shown in Fig. 64, the effect of the occulter on the light field is based upon the 

distance of the observer from the object, the nominal radius of the object, and the mid-
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band wavelength. The Fresnel region is the region where a dark shadow zone exists. It is 

defined by the Fresnel number being greater than unity, where the Fresnel number is 

defined as 

 

2
a

F
z

   (5.1) 

where a  is the objects nominal radius, z  is the distance of the observer from the object, 

and   is the narrow-band mean wavelength of light considered [78]. A sharp shadow 

only exists for 1F . Since relatively small near earth asteroids are considered here, the 

Fresnel number is typically less than unity which means no sharp shadow exists at the 

observer’s location. Rather, only an interference pattern exists because the observer is 

within the Fraunhofer region (defined by 1F  ). This inteference of the wave field, herein 

called the shadow pattern, is shown for the asteroid Itokawa at various values of z  in Fig. 

65b-d. It is thus suggested that characterizing an object geometrically based on the shadow 

is not optimal. The object should be characterized by analyzing the interference pattern it 

produces through an intensity mapping technique which requires a specialized method to 

solve the phase retrieval problem. 
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Fig. 63. Schematic of the traditional stellar occultation system which relies on a shadow with sharp 

edges. 

 

 

Fig. 64. Schematic of an object’s shadow showing the shadow zone (darkly shaded) and interference 

zone (lightly shaded) and the Fresnel and Fraunhofer regions. This model assumes a point source to 

the left of the occulter. 
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Fig. 65. Comparison of shadow patterns for the asteroid Itokawa at several Fresnel number values. 
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 Table 3 summarizes four size classifications of asteroids and gives an estimated 

number of objects within the solar system in each classification. The estimated number of 

objects in each classification is based on the historical discovery trends. The table shows 

that very few of the estimated asteroids within the 40 to 140 meter range have been 

discovered. Based on this data, an imaging system is desired which can observe these 

objects. The traditional method would require the asteroid to pass close enough to have a 

Fresnel number of greater than 50 which would require it to pass closer to the Earth than 

the lunar orbit. The new method discussed here aims to function when the Fresnel number 

is as low as 0.5 which gives the system a range much larger than the traditional method. 

A new method is thus sought to characterize small asteroids which are large enough to 

cause significant damage upon impact before they threaten the Earth. 
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Table 3. Summary of asteroid size’s relationship to the observation distance required for certain 

Fresnel numbers. Red denotes troublesome quantities and requirements. Green denotes a safe 

observation criterion. 

Diameter (m) >1000 1000-140 140-40 40-1 

# Estimated 966 14,000 ~285,000 -- 

# Observed 899 4,557 2,259 1,685 

% Observed 93% ~33% ~1% -- 

Distance (km) for F=50 >10,000,000 <10,000,000 

>200,000 

<200,000 

>15,000 

<15,000 

>10 

Distance (au) for F=50 >0.07 <0.07 

>0.001 

<0.001 

>0.0001 

<0.0001 

>7e-8 

Distance (km) for F=0.5 >1,000,000,000 <1,000,000,000 

>20,000,000 

<20,000,000 

>1,500,000 

<1,500,000 

>1,000 

Distance (au) for F=0.5 >7 <7 

>0.1 

<0.1 

>0.01 

<0.01 

>7e-6 
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 To formulate the problem, consider the object plane with spatial coordinates 

 ,x x y and an observation plane in the Fraunhofer region with spatial coordinates 

 ,X X Y . Both planes are parallel and separated by the distance z , as shown in Fig. 64. 

The object plane can be described by the view angle from the observation location yielding 

 ,
x y

x z     and for convenience the observation plane coordinates can be scaled as 

 ,u X z u v  . The star far to the left in Fig. 64 is assumed to be a point source. Since 

the occulter is assumed to lie within the object plane, its shape defines the complex field 

at the image plane. The field is thus characterized by the silhouette function    which 

is defined as 

  
0, if  is inside the asteroid profile

1, otherwise.





  



  (5.2) 

Propagating the field from the point source to the object plane and then to the observation 

plane using the Huygens-Fresnel principle applied to shadows gives the Fresnel diffraction 

equation [69, 76, 78, 79, 80] 

    
2

2
exp exp .

z i z i
U u X d

 
    

  

   
       

   
   (5.3) 

Notice that equation (5.3) contains the exponential term  exp i z     which 

introduces a quadratically increasing phase shift into the field. The equation thus cannot 

be discretized and turned into a discrete Fourier transform, as is done in the traditional 

phase retrieval problem, unless the discretization yields elements much smaller than the 

wavelengths of the term  exp i z     [76]. Since typically 1 10z e , such a 
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resolution would be prohibitive computationally when considering an object plane large 

enough to encompass an astronomical object. Additionally, a discrete Fourier transform 

would not properly capture the entire image plane out to infinity as the integral in (5.3) 

requires. A continuous solution is thus the only apparent feasible route. 

 The formal problem statement here is to devise an algorithm to estimate the shape 

of the occulting object’s silhouette function    based on knowledge of the intensity 

distribution (shadow pattern)    
2

I u U u . The method should be able to tolerate a 

reasonable level of noise in the intensity data and preferably does not require spatially 

high resolution knowledge of the shadow pattern or a priori knowledge. 

5.1. Data Collection 

 Initial designs for a stellar occultation observation system with the capability to 

image asteroids use a linear array of light collecting apertures spanning several kilometers. 

Since the asteroid and its shadow are moving relative to the apertures, each aperture has a 

chance to measure the wave field intensity,  I u , along a line in the shadow pattern 

 ,X Y  coordinate system [74]. A schematic of the system is shown in Fig. 66 which 

portrays the path of the shadow pattern moving across a linear array of observers. 

Preliminary designs for this system place the apertures on satellites in a “string of pearls” 

constellation to mitigate any atmospheric interferences. 



116 

 

 

Fig. 66. Schematic of the asteroid casting a shadow which moves across observers. 
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5.2. Phase Retrieval Algorithm 

 Equation (5.3) is the standard Fresnel diffraction equation which describes the 

wave field some distance from the occulting object; however, its magnitude is the known 

quantity when measuring the changes in the wave field from the occulted star [81]. To 

simplify the expression it can be multiplied by the phase factor  exp i zu u   which 

has a magnitude of unity and is not a function of the variable of integration  . This factor 

completes the square and gives the form 

 

   

   

2

2

2

2

2

2
exp

exp .

z i z i z i z
I u u u u d

z i z
u d

  
    

   


  

 

 
       

 

 
   

 





  (5.4) 

The phase factor is benign since only the magnitude is preserved when defining  J u . 

Equation (5.4) can be rewritten in the convenient form 

 

      

      

   

2

2 2

2

2

2

2

2 2

2

2 2

1 1 exp

exp 1 exp

exp exp

z i z
I u u d

z i z z i z
u d u d

z i z z i z
u d u d




  

 

 
    

   

 
   

   

 
       

 

   
        

   

   
      

   



 

 

  (5.5) 

where   is the domain where   0  . The question thus becomes how to describe the 

region   such that its shape can be estimated. Since it is known that the shape of the 

occulter may not be a standard geometric shape, an obvious choice is to describe   using 

a grid of binary values. This would turn the second integral in (5.5) into a discrete 
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summation of continuous integrals over the elements in this grid [82]. If the  ,i j  element 

of the grid covers the domain 

   2

, , ,
, 0 0

i j x y x x i x y y j y
A                   (5.6) 

and has the value ,i j
 , equation (5.5) becomes 

 

   

   

2

,

2

2

2

,

,

exp

              1 exp .
i j

i j
A

i j

z i z
I u u d

z i z
u d


 

 


 

 

 
  

 

 
    

 



 

  (5.7) 

Making use of the complex form of the Fresnel integral [83] 

  
2

0
exp ,

2

x i t
E x dt

 
  

 
   (5.8) 

the integrals in equation (5.7) expand to 

 

 
,2 ,2

,1 ,1

2

,2 ,1

,2 ,1

2 2
exp      

2 2
.

y x

y x

x x

y y

i z z z
u d E E

z z
E E

 

 


   

  

 
 

     
           

       

    
        
     

 

  (5.9) 

Using this expression, equation (5.7) yields [77] 

 

   

   

   
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2
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.
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x i x i

I u i

z z
E x u E u

z z
E y v E v
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 

 
 



   

    
          

    

    
          

    



  (5.10) 
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 The problem now is to estimate the  ,i j  components of the grid which have 

,
0

i j
  . This can be done by a simple guess-and-check method where the region   is 

guessed, the field’s squared magnitude is computed using equation (5.10), and it is 

compared to the measured intensity. When a suitable estimate for   is found the two 

should closely match. The only difference between the two would be the fact that the true 

silhouette function does not follow the grid pattern that the estimation assumed [82]. The 

grid should thus be dense enough to mitigate this error. 

 An additional convenience of this method is the relaxed requirements on the 

intensity data resolution. The intensity data and the silhouette grid can be different 

resolutions. Additionally, the intensity data can be sparse since it is only used for a 

comparison and not a Fourier transform as is done in the traditional phase retrieval 

problem. The number of intensity measurements required is discussed in section 5.5. 

 The simplest method to use for the guess and check is a raster scan across the grid. 

Each grid element 
,i j

  is flipped in value and the intensity distribution error is checked 

for improvement. The error between the estimated and measured intensity distributions 

can be defined by 

    
22

, ,

ˆ

ˆˆ ˆ
i j i j

u

e J u J u


    (5.11) 

where ˆ ˆ,
ˆ

i j
u  are the locations of measurements and  ,

ˆ ˆ
i j

J u  are the measured values. If the 

error decreases for a change to the grid, it is kept; otherwise the value is not changed. 

While this appears to be a naïve approach, it often works as will be shown.   
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 Using the error metric in Equation (5.11) has some caveats. There exist local 

minima in the error which can cause the algorithm to stagnate. A convenient indication is 

if no error reduction takes place for an entire iteration it is known that the method has 

stagnated. A simple method to help the algorithm along is to randomly flip a few pixel 

values in the image. The optimization of this algorithm to mitigate the effect of local 

minima is left to subsequent work. Some ideas include testing multiple pixels at one time. 

Within this idea the one pixel is located using the raster scan and the second pixel is chosen 

at random. Since such a method introduces random behaviors, only the simplest raster 

scan method is shown here since the performance is deterministic. 

5.3. Example 

 To demonstrate the silhouette estimation process, consider the asteroid Itokawa as 

viewed from 1 astronomical unit away. The true silhouette is based on an image from the 

Hayabusa mission and is shown in Fig. 67. The image is 64 64  pixels and Itokawa is 40 

pixels wide. Itokawa is known to be about 535m  long, so each pixel in the image is 

13.4m  wide/tall. The angular resolution is thus 5
1.8 10 arcsec


 , and the field of view is  

3
1.2 10 arcsec


 . This image is, therefore, unresolvable by even the Hubble telescope and 

is even not feasible for optical astronomical interferometers. If green light is considered, 

as is common in optical interferometry, the mean wavelength is 7
5.5 10 m


 . Referring to 

Equation (5.1) the Fresnel number is thus 0.87. Since the aphelion and perihelion of 

Itokawa are 1.695au  and 0.953au  respectively, this example represents a reasonable 

case of Itokawa viewed from Earth. The intensity distribution for these parameters based 

upon the silhouette in Fig. 67 is shown in Fig. 68. Note the bright regions within the 
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silhouette which correspond to a diffraction effect similar to the Arago spot which 

reinforces the claim that the traditional occultation method of timing the disappearance 

and reappearance of the occulted star is unreliable [79, 83, 84]. 

 In practice, the entire intensity map cannot be known. If the intensity is known on 

a grid spanning two kilometers every twenty meters this represents a 100 100  grid as 

shown in Fig. 68. It is not necessary for the measurements to follow a grid pattern. This is 

simply done here to make the data more convenient to display in a figure. A detailed 

explanation of the data collection for this application is discussed in [81] and in section 

5.5. It is advantageous for the measurements to span an area large enough to capture the 

distorted silhouette but also small enough to avoid the high frequency fluctuations that 

occur far away from the origin as evident in Equation (5.5). Although these fluctuations 

are small, proper measurements far away from the origin would require tight tolerances 

on spatial positioning to resolve these fluctuations. Additionally, far away from the origin 

the field amplitude is approximately constant according to the Fresnel integral. 

Information far away from the origin is thus not as useful as information near the origin. 

 For this example the silhouette is assumed initially to be all white. The pixels in 

the grid are tested by flipping their values from top to bottom, left to right in a regular 

pattern and looking for a decrease in the error defined in Equation (5.11). A complete scan 

across the grid is designated as one iteration. Fig. 69 shows the error defined by Equation 

(5.11) through ten iterations. The image after just one iteration is shown in Fig. 70. The 

general shape of the asteroid is already apparent since the most error reduction occurs in 

the first iteration. Although often unnecessary for convergence, a priori knowledge can 
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speed convergence. The user can manually edit the estimate before continuing to the next 

iteration based on intuitive knowledge that an asteroid will not typically have holes in it 

or any other a priori knowledge. This was not done for this example to prove convergence 

without this knowledge. 

 The final silhouette is shown in Fig. 71 where the input intensity matches the 

transformation of the estimated image, i.e. the error is nearly zero. Notice that the error 

drops drastically near the last iterations. This is because a single incorrect pixel accounts 

for the majority of the error value. 

 The result of the 32 32  image can be used as the initial estimate of a higher 

resolution estimation. This has been implemented with great success. Initially a 16 16  

or similar coarse image is computed. Its estimate serves as the input to the 32 32  image 

recovery. This nested grid approach can reduce the number of iterations needed to recover 

high resolution images and helps to ensure convergence. Using this technique the exact 

64 64  silhouette was estimated using the 32 32  estimate as the initial guess in only ten 

iterations. 
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Fig. 67: The true silhouette of the asteroid Itokawa pixelated in a 64x64 grid based on images from 

[85] and scaled for Itokawa as viewed from 1 astronomical unit away. 

 
Fig. 68: The coarse grid of intensity data for the asteroid Itokawa viewed with a Fresnel number of 

0.87 which serves as the input to the phase retrieval algorithm. 
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Fig. 69: The error between the intensity distribution of the estimated image and the measured 

intensity data. 

5  
Fig. 70: The estimated silhouette of Itokawa pixelated in a 32x32 grid after 1 iteration. 
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Fig. 71: The estimated silhouette of Itokawa pixelated in a 32x32 grid after 10 iterations. 
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5.4. Silhouette Recovery in the Presence of Noise 

 The intensity measurements here are independent recordings of the field intensity. 

Because of the quantization of light (in photons), the output of any intensity measurement 

device has inherent noise due to randomness of the arrival times of individual photons.  

Therefore, it is important that the method be capable of converging when the intensity 

contains random noise. The noise model used here is commonly used in Michelson 

interferometry and takes the form discussed previously [86, 87]. The model is 

           
2 2

1 2
ˆ ˆˆ ˆ ˆ 1 0, 0,J u U u U u N iN       (12) 

where  0,
i

N   is independent random Gaussian noise with a standard deviation of   

[1, 42, 88]. In an attempt to quantify the performance of this algorithm in the presence of 

noise, the 32 32  case for Itokawa was used in a Monte Carlo simulation. Twenty-five 

image estimates were constructed for different realizations of the noise at several noise 

levels, and no extra measures were implemented to mitigate local minima. The noise levels 

correspond to typical discussions of noise in phase retrieval [43, 61]. The mean errors of 

the twenty-five estimates at each noise level reveal an interesting trend shown in Fig. 72. 

As expected, the error decreases very quickly during the first iteration. For some noise 

levels the error later stagnates at a non-zero level while some converge to nearly zero.  

 The final error values are shown in Fig. 73. The trend that at near zero noise levels 

the algorithm typically stagnates at a higher error level than at noise levels between five 

and ten percent is unexpected. At near zero noise levels the standard deviations of the 

Monte Carlo results are much larger than at higher noise levels. The stagnated error 
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increases linearly above ten percent. The erratic behavior for near noiseless cases is not 

currently understood.  

 An example of the result for a noise standard deviation of 0.2 is shown in Fig. 74. 

The result contains some incorrect pixels but the shape of Itokawa is clearly evident. This 

result can be greatly improved by a simple Gaussian image filter applied to the intensity 

map. The result after filtering the intensity data using a Gaussian with a standard deviation 

of three pixels is shown in Fig. 75. Only two pixels in the final silhouette are incorrect and 

one is far enough away from the silhouette to be definitively attributed to noise. A 

comparable Monte Carlo simulation was performed implementing the Gaussian image 

filter and the result showed no difference in the mean error near the zero noise regime; 

however, for higher noise levels the mean error decreased by about 25%. The result is 

shown in Fig. 76. 
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Fig. 72: Monte Carlo results showing the mean error of 25 trials at several noise levels. 

 
Fig. 73: Monte Carlo results showing the final mean error of 25 trials at several noise levels. 
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Fig. 74: Example result after 10 iterations with a noise standard deviation of 0.2. 

 
Fig. 75: Example result after 3 iterations with a noise standard deviation of 0.2 and a Gaussian filter 

applied to the intensity data. 


x
 [arcsec]


y
 [

a
rc

s
e
c
]

-6 -4 -2 0 2 4 6

x 10
-4

-6

-4

-2

0

2

4

6

x 10
-4


x
 [arcsec]


y
 [

a
rc

s
e
c
]

-6 -4 -2 0 2 4 6

x 10
-4

-6

-4

-2

0

2

4

6

x 10
-4



130 

 

 
Fig. 76: Monte Carlo results showing the final mean error of 25 trials at several noise levels with a 

Gaussian image filter applied to the intensity data. 
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5.5. Data Coverage and Aperture Positioning 

 The previous discussions used knowledge of the shadow pattern which spanned a 

rectangular grid. In practice, the shadow pattern is only known at specified positions. Since 

the shadow pattern is moving at a high velocity relative to the Earth, each aperture can 

collect intensity measurements in a straight line across the shadow pattern. Shown in Fig. 

77 is an example of the detected intensity distribution by 20 equally spaced apertures each 

75m apart with 128 measurements along each line. To quantify the quality of the data 

coverage the ratio of the number of measurements to the number of pixels in the silhouette 

estimate is defined as 

 
# M easurements

.
# Pixels in Silhouette

    (13) 

The definition of   can be used to establish a theoretical minimum number of 

measurements. The number of constraints on the system—the number of measurements—

should be greater than the number of unknowns—the number of pixels in the silhouette 

estimate.  

 In the case of the measurements shown in Fig. 77 used to recover a 32 32  pixel 

silhouette estimate, the ratio   is 2.5. Perfect silhouette recovery was achieved after 3.6 

iterations as shown in Fig. 78. For half the number of apertures, the intensity data is shown 

in Fig. 79. In this case   is 1.25—slightly above the theoretical minimum. The result is 

shown in Fig. 80. If the number of apertures in the data collection is reduced to 8, the ratio 

  is reduced to exactly unity. In this case the recovery is theoretically possible; however, 
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the result shown in Fig. 82 is not clear. The threshold of data collection for practical 

recovery requires approximately 2  .  

 The analysis method used for the previous results can be used for testing various 

arrangements and spacing of the apertures and can include error in the position knowledge 

of each aperture. A specific case shown here is the situation where the apertures are 

assumed to be equally spaced; however, they are actually randomly perturbed. Consider 

the situation shown in Fig. 83 where the 20 apertures are assumed to be equally spaced 

but their actual positions are independently randomly offset by a normal random 

distribution with a standard deviation of 5 meters. The result shown in Fig. 84 shows only 

a single pixel is incorrect. If the standard deviation of the position errors is increased to 25 

meters, however, the image suffers greatly as shown in Fig. 85 and Fig. 86. An exact 

quantification of the allowable position error is difficult to obtain because of the subjective 

nature of the quality of the image; however, the 5 meter and 25 meter perturbation 

examples shown here probably show a lower and upper bound on the allowable position 

error. 
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Fig. 77: Data collection pattern for 20 equally spaced apertures each 75m apart. The red regions 

between the lines of data denotes the absence of data. There are 128 intensity measurements along 

each apertures path through the shadow pattern. The full intensity distribution is identical to Fig. 

68. 

 
Fig. 78: Silhouette estimate for 20 apertures making 128 measurements each, i.e. ρ=2.5. 
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Fig. 79: Data collection pattern for 10 equally spaced apertures each 150m apart. The red regions 

between the lines of data denotes the absence of data. There are 128 intensity measurements along 

each apertures path through the shadow pattern. The full intensity distribution is identical to Fig. 

68. 

 
Fig. 80: Silhouette estimate for 10 apertures making 128 measurements each, i.e. ρ=1.25. 
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Fig. 81: Data collection pattern for 8 equally spaced apertures each 187.5m apart. The red regions 

between the lines of data denotes the absence of data. There are 128 intensity measurements along 

each apertures path through the shadow pattern. The full intensity distribution is identical to Fig. 

68. 

 
Fig. 82: Silhouette estimate for 8 apertures making 128 measurements each, i.e. ρ=1. This results 

demonstrates the need for more measurements than the theoretical minimum requirement. 
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Fig. 83: The randomly perturbed positions of the measurements with a standard deviation of 5 

meters (a) and the erroneously assumed positions of the measurements (b). The difference is not 

easily discerned. 
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Fig. 84: The estimated silhouette recovered from 20 apertures randomly perturbed with a standard 

deviation of 5 meters. 


x
 [arcsec]


y
 [

a
rc

s
e
c
]

-6 -4 -2 0 2 4 6

x 10
-4

-6

-4

-2

0

2

4

6

x 10
-4



138 

 

 
Fig. 85: The randomly perturbed positions of the measurements with a standard deviation of 25 

meters (a) and the erroneously assumed positions of the measurements (b). 
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Fig. 86: The estimated silhouette recovered from 20 apertures randomly perturbed with a standard 

deviation of 25 meters. 
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6. CONCLUSIONS 

 In this work the phase retrieval problem was explored with the focus being the 

various formulations and applications of the problem. The introduction discussed the three 

portions of the problem. The first portion of the problem is understanding the propagation 

of a light wave field. The historical evolution of the light propagation model was discussed 

and the modern Huygens-Fresnel principle introduced. The Huygens-Fresnel principle is 

a near perfect approximation of the mapping from a light source to the observed wave 

field some distance away. It was also used here to derive the Van Cittert-Zernike 

theorem—a cornerstone of interferometry. Both of these derivations showed that the 

mapping is the Fourier transform which serves as the basis of most phase retrieval 

solutions. 

 The second portion of the phase retrieval problem is the method of measuring the 

wave field’s intensity at the observation location. Derivations were shown for how an 

amplitude interferometer and an intensity correlation interferometer measure the mutual 

coherence of the wave field. The mutual coherence was shown to be proportional to the 

magnitude of the Fourier transform of the light source via the Van Cittert-Zernike theorem. 

This led to the heart of the classical phase retrieval problem: the estimation of the phase 

of the Fourier transform of the light source based on knowledge of the Fourier transform’s 

magnitude. Similarly, the method of phase retrieval using Gaussian basis functions was 

shown to be viable. This method capitalized on the optical transfer function’s form for a 

circular aperture as the data collection apparatus. Lastly, the occultation method was 
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shown to be a practical way of measuring the wave field resulting from an asteroid 

occulting a star by measuring the intensity of the field at various spatial and temporal 

locations. 

 The final portion of the phase retrieval problem is the estimation of the phase of 

the measured wave field. Three distinct methods of performing the estimation process 

were explored each within different frameworks. 

 The first method built upon Gerchberg and Saxton’s Error-Reduction method, 

Fienup’s Hybrid Input-Output methods, and subsequent works by various researchers. A 

deficiency was identified within most current phase retrieval methods in how they handle 

measurement noise. Since the signal-to-noise level is one of the most prominent 

difficulties encountered in phase retrieval applications, a method was presented here 

which is capable of filtering the measured data. Unlike other attempts to solve this 

problem, the solution here was derived specifically to filter noise and has an analytical 

rationale. Two types of examples were shown to demonstrate this method’s abilities. An 

example using a typical image was shown in which the measurement noise metric was 

reduced by 62% and other trials of this method have sometimes (but rarely) shown over 

90% noise reduction. Other phase retrieval algorithms showed worse convergence 

behavior given the same noisy input data and comparable parameter values. Examples 

were also shown using a two-dimensional case which clearly shows how each algorithm 

performs projections to converge to the intersection of the Fourier modulus and image 

support domains. Within these examples, the relaxed Fourier modulus projection showed 

favorable performance when compared to the classical Fourier modulus projection. 
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 The second method of solving the phase problem was formulated using an image 

formed with Gaussian bases. A recursive method was derived capable of exactly solving 

the phase problem and recovering the geometry of the light source. It was only shown to 

work here for a star cluster, because in its current form the algorithm only works if the 

true image is formed from less than a dozen Gaussians. A notable benefit of a phase 

retrieval solution using Gaussian bases is the existence of a definitive error metric. That 

is, it is clearly known whether or not the algorithm has converged and whether it has 

converged to the true solution. While the applications of this method are limited because 

of the restriction on the number of Gaussian bases in the image, it is a step towards a 

universal analytical solution. 

 The final method of phase retrieval presented here was a specialized formulation 

applied to recovering the silhouette of an asteroid occulting a star. Since this method 

required the use of the Fresnel diffraction equation instead of the Van Cittert-Zernike 

theorem to describe the light’s propagation, the Fourier transform could not be used as a 

mapping between the source and observation planes. This led to an entirely new method 

being developed. Where the traditional phase retrieval method has a closed loop, this new 

method is a guess and check method because the Fresnel diffraction equation cannot be 

inverted analytically. This method was shown to be able to theoretically recover the 

silhouette of an asteroid with resolution far surpassing any current optical imaging system. 

The solution traded efficiency and simplicity found in the classical phase retrieval method 

for computation expense and computer memory usage. Where the classical phase solution 

is able to affect every pixel in an iteration by performing Fast Fourier Transforms, this 
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solution method uses pre-computed solutions to the Fresnel integral and summations of 

large arrays of numbers. It is thus much more computationally and memory intensive. 

Since these computations are performed offline, it is suggested that these expenses are not 

prohibitive. The performance of this algorithm was explored in the presence of three 

adverse effects. The theoretical and practical minimum number of measurements was 

derived. The performance was shown to be robust in the presence of noise. Finally, the 

uncertainty in the location of the apertures was shown to have a small effect. Additionally, 

it was shown that a low resolution silhouette estimate can be used as the initial guess for 

a higher resolution estimate. This nested grid approach can greatly reduce the computation 

time required for high resolution estimates. Additionally, the motivation for such an 

imaging system was justified based on the statistics of 40 to 140 meter asteroid discovery 

rates. 

 The research presented here thoroughly explored the various parts of the phase 

retrieval problem. Contribution have been made and published which both progress the 

existing state-of-the-field phase retrieval methods and explore new formulations and 

applications of the phase retrieval problem. 

  



144 

 

REFERENCES 

 

[1]  R. Trahan and D. Hyland, "Mitigating the effect of noise in the hybrid input–output 

method of phase retrieval," Applied Optics, vol. 52, no. 13, pp. 3031-3037, 

2013.  

[2]  R. Trahan and D. Hyland, "Mitigating the Effect of Noise in Iterative Projection 

Phase Retrieval.," in Proceedings of the 2014 Imaging and Applied Optics: 

Optics and Photonics Conference, Seattle, 2014.  

[3]  R. Trahan and D. Hyland, "Phase retrieval of images using Gaussian radial bases," 

Applied Optics, vol. 52, no. 36, pp. 8627-8633, 2013.  

[4]  R. Trahan and D. Hyland, "Phase Retrieval Applied to Stellar Occultation for 

Asteroid Characterization," Applied Optics, vol. 53, no. 15, pp. 3540-3547, 

2014.  

[5]  S. Singh, Fundamentals of Optical Engineering, Darya Ganji: Discovery 

Publishing House, 2009.  

[6]  M. D. Fayer, Absolutely Small: How Quantum Theory Explains Our Everyday 

World, New York: American Management Association, 2010.  

[7]  R. Hooke, Micrographia: or, Some Physiological Descriptions of Minute Bodies 

Made by Magnifying Glasses, London: J. Martyn and J. Allestry, 1665.  

[8]  P. Hariharan, Basics of Interferometry, 2nd ed., San diego, Ca: Elsevier, 2007.  



145 

 

[9]  T. Young, "On the Theory of Light and Colours," Philosophical Transactions of 

the Royal Society of London, vol. 92, pp. 12-48, 1802.  

[10]  A. Ghatak, Optics, 4th ed., West Patel Nagar: McGraw-Hill, 2009.  

[11]  G. J. Gbur, Mathematical Methods for Optical Physics and Engineering, 

Cambridge, GBR: Cambridge University Press, 2010.  

[12]  Physclips, "Diffraction from a single slit. Young's experiment with finite slits.," 

[Online]. Available: 

http://www.animations.physics.unsw.edu.au/jw/light/single-slit-diffraction.html. 

[Accessed 17 1 2014]. 

[13]  "Young's Double Slit Experiment," [Online]. Available: 

http://cnx.org/content/m42508/latest/?collection=col11406/latest. [Accessed 04 

06 2014]. 

[14]  W. H. Steel, Interferometry, 2nd ed., New York, NY: Cambridge University Press, 

1983.  

[15]  P. H. van Cittert, "Die Wahrscheinliche Schwingung Verteilung in Einer von Einer 

Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene," Physica, vol. 

1, p. 201, 1934.  

[16]  C. Foellmi, "Intensity interferometry and the second-order correlation function g^2 

in astrophysics," Astonomy & Astrophysics, vol. 507, no. 3, pp. 1719-1727, 

2009.  



146 

 

[17]  E. H. Linfoot, Fourier Methods in Optical Image Evaluation, London: The Focal 

Press, 1964.  

[18]  M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. 

Mahajan and E. Van Stryland, Handbook of Optics, 3 ed., vol. 2, New York: 

McGraw-Hill Professional, 2009.  

[19]  J. A. Roberts, Indirect Imaging: Measurement and Processing for Indirect Imaging, 

Cambridge: Cambridge University Press, 1984.  

[20]  G. E. Hale, "Wikipedia," 1922. [Online]. Available: 

http://en.wikipedia.org/wiki/File:Hooker_interferometer.jpg. [Accessed 30 5 

2014]. 

[21]  "Navy Prototype OpticalInterferometer (NPOI)," [Online]. Available: 

http://usic.wikispaces.com/Navy+Prototype+OpticalInterferometer+(NPOI). 

[Accessed 30 5 2014]. 

[22]  R. Hanbury Brown and R. Q. Twiss, "A New Type of Iterferometer for Use in 

Radio Astronomy," Philosophical Magazine, vol. 45, no. 366, 1954.  

[23]  R. Hanbury Brown and R. Q. Twiss, "Interferometry of the Intensity Fluctuations 

in Light," Proceedings of the Royal Society of London, vol. 242, no. 1230, pp. 

300-324, 5 Nov 1957.  

[24]  R. Hanbury Brown, "Stellar Interferometer at Narrabri Observatory," Nature, vol. 

218, pp. 637-641, 1968.  



147 

 

[25]  R. Hanbury Brown and R. Q. Twiss, "A Test of a New Type of Stellar 

Interferometer on Sirius," Nature, vol. 178, no. 4541, pp. 1046-1048, 1956.  

[26]  R. H. Brown, "Stellar Interferometer at Narrabri Observatory," Nature, vol. 218, 

pp. 637-641, 1968.  

[27]  J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang and L. A. Nagahara, "Atomic 

Resolution Imaging of a Carbon Nanotube from Diffraction Intensities," 

Science, vol. 300, p. 1419, 2003.  

[28]  I. A. Vartanyants, I. K. Robinson, J. D. Onken, M. A. Pfeifer, G. J. Williams, F. 

Pfeiffer, H. Metzger, Z. Zhong and G. Bauer, "Coherent x-ray diffraction from 

Quantum dots," Physical Review B, vol. 71, p. 245302, 2005.  

[29]  M. Pfeifer, G. K. Williams, I. A. Vartanyants, R. Harder and I. K. Robinson, 

"Three-dimensional mapping of a deformation field inside a nanocrystal," 

Nature Netters, vol. 442, pp. 63-66, 2006.  

[30]  H. H. Rose, "Optics of High-Performance Electron Microscopes," Science and 

Technology of Advanced Materials, vol. 9, no. 014107, pp. 1-30, 2008.  

[31]  R. G. Lyon, "HST phase retrieval: a parameter estimation," in Applications of 

Digital Image Processing XIV, San Diego, 1991.  

[32]  J. R. Fienup, J. C. Marron, T. J. Schulz and J. H. Seldin, "Hubble Space Telescope 

characterized by using," Applied Optics, vol. 32, no. 10, pp. 1747-1767, 1 4 

1993.  



148 

 

[33]  H. A. Arsenault and K. Chalasinska-Macukow, "The Solution to the Phase 

Retrieval Problem Using the Sampling Theorem," Optics Communications, vol. 

47, no. 6, pp. 380-386, Oct 1983.  

[34]  R. W. Gerchbert and W. O. Saxton, "A Practical Algorithm for the Determination 

of the Phase from Image and Diffraction Plane Pictures," Optik, vol. 35, p. 237, 

1972.  

[35]  J. R. Fienup, "Reconstruction of an Object from the Modulus of Its Fourier 

Transform," Optics Letters, vol. 3, no. 1, pp. 27-29, July 1978.  

[36]  N. C. Gallagher and B. Liu, "Convergence of a Spectrum Shaping Algorithm," 

Applied Optics, vol. 13, no. 11, pp. 2470-2471, 1974.  

[37]  J. R. Fienup, T. R. Crimmins and W. Holsztynski, "Reconstruction of the support 

of an object from the support of its autocorrelation," JOSA, vol. 72, no. 5, pp. 

610-624, 1982.  

[38]  J. R. Fienup, "Phase Retrieval Algorithms: A Comparison," Applied Optics, vol. 

21, no. 15, pp. 2758-2769, 1 Aug 1982.  

[39]  S. Marchesini, H. He, H. N. Chapman, S. P. Hai-Riege, A. Noy, M. R. Howells, U. 

Weierstall and J. C. Spence, "X-ray image reconstruction from a diffraction 

pattern alone," Physical Review B, vol. 68, no. 140101, pp. 1-4, 2003.  

[40]  J. Miao, D. Sayre and H. N. Chapman, "Phase retrieval from the magnitude of the 

Fourier transforms of nonperiodic objects," J. Opt. Soc. Am. A, vol. 15, no. 6, 

pp. 1662-1669, 1998.  



149 

 

[41]  D. Dravins, S. LeBohec, H. Jensen and P. Nunez, "Optical intensity interferometry 

witht eh Cherenkov Telescope Array," Astroparticle Physics, vol. 43, pp. 331-

347, March 2013.  

[42]  R. H. Brown and R. Q. Twiss, "The question of correlation between photons in 

coherent light rays," Nature, vol. 178, no. 4548, pp. 1447-1448, 1956.  

[43]  G. Liu, "Object reconstruction from noisy holograms: multiplicative noise model," 

Optics Communications, vol. 79, no. 6, pp. 402-406, 1990.  

[44]  R. Bates and D. Mnyama, Advances in Electronics and Electron Physics, vol. 67, 

P. W. Hawkes, Ed., Toulous: Academic Press, 1987.  

[45]  C. M. Caves, "Quantum-mechanical noise in an interferometer," Phy. Rev. D, vol. 

23, pp. 1693-1708, 1981.  

[46]  S. Marchesini, "A unified evaluation of iterative projection algorithms for phase 

retrieval," Review of Scientific Instruments, vol. 78, no. 011301, pp. 1-11, 2007.  

[47]  J. P. Abrahams and A. G. W. Leslie, "Methods used in the structure determination 

of bovine mitochondrial F1 ATPase," Acta Cryst., vol. D, no. 52, pp. 30-42, 

1996.  

[48]  J. von Neumann, Functional Operators, vol. 2, Princeton: Princeton University 

Press, 1950.  

[49]  H. H. Bauschke and J. M. Borwein, "On the convergence of von Neumann's 

alternaing projection algorithm for two sets," Set-Valued Analysis, vol. 1, no. 2, 

pp. 185-202, 1993.  



150 

 

[50]  Elser, Viet, "Phase retrieval by iterated projections," J. Opt. Soc. Am. A, vol. 20, 

no. 1, pp. 40-55, 2003.  

[51]  D. R. Luke, "Relaxed averaged alternating relfections for diffraction imaging," 

Inverse Problems, vol. 21, pp. 37-50, 2005.  

[52]  A. Levi and H. Stark, "Image restoration by the method of generalized projections 

with application to restoration from magnitude," J. Opt. Soc. Am. A, vol. 1, pp. 

932-943, 1984.  

[53]  M. Kohl, A. A. Minkevich and T. Baumback, "Improved success rate and stability 

for phase retrieval by including randomized overrelaxation in the hybrid input-

output algorithm," Opt. Express, vol. 20, pp. 17093-17106, 2012.  

[54]  G. Liu, "Fourier phase retrieval algorithm with noise constraints," Signal 

Processing, vol. 21, no. 4, pp. 339-347, 1990.  

[55]  A. V. Oppenhein and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed., 

Upper Saddle River: Prentice-Hall, 1999.  

[56]  J. R. Fienup and C. C. Wackerman, "Phase-retrieval stagnation problems and 

solutions," J. Opt. Soc. Am. A, vol. 3, no. 11, pp. 1897-1907, 1986.  

[57]  S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, 

U. Weierstall and J. Spence, "X-ray image reconstruction from a diffraction 

pattern alone," Physical Review B, vol. 68, no. 140101, 2003.  



151 

 

[58]  I. Kodama, M. Yamaguchi, N. Ohyama, T. Honda, K. Shinohara, A. Ito, T. 

Matsumura, K. Kinoshita and K. Yada, "Image reconstruction from an in-line 

X-ray hologram," Optics communications, vol. 125, pp. 36-42, 1996.  

[59]  J. Zhao, D. Wang, F. Zhang and Y. Wang, "Hybrid phase retrieval approach for 

reconstruction of in-line digital holograms without twin image," Opt. Eng., vol. 

50, no. 9, 2011.  

[60]  J. S. Wu, U. Weierstall and J. Spence, "Iterative phase retrieval without support," 

Optics Letters, vol. 29, no. 23, pp. 2737-2739, 2004.  

[61]  J. R. Fienup and C. C. Wackerman, "Phase-retrieval stagnation problems and 

solutions," Journal of the Optical Society of America, vol. 3, pp. 1897-1907, 

1986.  

[62]  E. Gur, V. Sarafis, I. Falat, F. Vacha, M. Vacha and Z. Zalevsky, "“Super-

resolution via iterative phase retrieval for blurred and saturated biological 

images," Opt. Express, vol. 16, pp. 7894-7903, 2008.  

[63]  R. Fernando, GPU Gems: Programming Techniques, Tips and Tricks for Real-

Time Graphics, Boston: Addison-Wesley Professional, 2004.  

[64]  M. Pharr and R. Fernando, GPU Gems 2: PRogramming Techniques for High-

Performance Graphics and General-Purpose Computation, Boston: Addison-

Wesley, 2005.  

[65]  P. S. Heckbert, "Survey of texture mapping," IEEE Comp. Graph. Appl., vol. 6, pp. 

56-67, 1986.  



152 

 

[66]  D. Shreiner, G. Sellers, J. M. Kessinish and B. M. Licea-Kane, OpenGL 

Programming Guide, Boston: Addison=Wesley, 2013.  

[67]  A. R. Smith, "A pixel is not a little square," in Microsoft Technical Memo 6, 1995.  

[68]  E. Hartman and J. Keeler, "Layered neural networks with gaussian hidden units as 

universal approximations," Neural Comput., vol. 2, pp. 210-215, 1990.  

[69]  M. Born and E. Wolf, Principles of Optics, 6th ed., Cambridge: Cambridge 

University Press, 1997.  

[70]  N. M. Temme, Special functions: An introduction to the classical functions of 

mathematical physics, New York: Wiley-Interscience, 1996.  

[71]  J. L. Elliot, Person, Zuluaga, Bosh, Adams, Brothers, Gulbis, Levine, Lockhart, 

Zangari, Babcock, Dupre, Pasachoff, Souza, Rosing, Secrest, Bright, Dunham, 

Sheppard, Kakkala, Tilleman, Berger, Briggs, Jacobson, Valleli, Volz, 

Rapoport, Hart, Brucker, Michel, MAttingly, Zambrano-Marin, Meyer, Wolf, 

Ryan, Ryan, Morzinsky, Grigsby, Brimacombe, Ragozzine, Montano and 

Gilmore, "Size and albedo of Kuiper belt object 55636 from a stellar 

occultation," Nature, vol. 465, p. 897–900, 2010.  

[72]  B. Sicardy, Bellucci, Gendron, Lacombe, LAcour, Lecacheux, Lellouch, Renner, 

Pau, Roques, Widemann, Colas, Vachier, Vieira Martins, Ageorges, Jainaut, 

Marco, Beisker, Hummel, Feinstein, Levato, Maury, Frappa, Gaillard, 

Lavayssiere, Di Sora, Mallia, Masi, Behrend, Carrier, Mousis, Rousselot, 

Alvarez-Candal, Lazzaro, Veiga, Andrei, Assafin, da Silva Neto, Jacques, 



153 

 

Pimentel, Weaver, Lecampion, Doncel, Momiyama and Tancredi, "Charon's 

size and an upper limit on its atmosphere from a stellar occultation," Nature 

439, vol. 439, pp. 52-54, 2006.  

[73]  B. Sicardy, Brahic, Ferrari, Gautier, Lecacheux, Lellouch, Roques, Arlot, colas, 

Thuillot, Sevre, Vidal, Blanco, Cristaldi, Buil, Klotz and Thouvenot, "Probing 

Titan's atmosphere by stellar occultation," Nature, vol. 343, pp. 350-353, 1990.  

[74]  H. E. Schlichting, E. O. Ofek, M. Wenz, R. Sari, A. Gal-Yam, M. Livio, E. Nelan 

and S. Zucker, "A single sub-kilometre Kuiper belt object from a stellar 

occultation in archival data," Nature, vol. 462, pp. 895-897, 2009.  

[75]  F. Rogues, Doressoundiram, Dhillon, Marsh, Bickerton, Kavelaars, Moncuquet, 

Auvergne, Belskaya, Chevreton, Colas, Fernandez, Fitzsimmons, Lecacheux, 

Mousis, Pau, Peixinho and Tozzi, "Exploration of the Kuiper Belt by High-

Precision Photometric Stellar Occultations: First Results," The Astronomical 

Journal, vol. 132, no. 2, 2006.  

[76]  E. F. Young, "A Fourier optics method for calculating stellar occultation light 

curves by objects with thin atmospheres," The Astronomical Journal, vol. 144, 

no. 2, pp. 1-13, 2012.  

[77]  F. Roques, M. Moncuquet and B. Sicardy, "Stellar occultations by small bodies: 

diffraction effects," The Astronomical Journal, vol. 93, no. 6, pp. 1549-1558, 

1987.  



154 

 

[78]  O. K. Ersoy, Diffraction, Fourier Optics and Imaging, Hoboken: Wiley-

Interscience, 2007.  

[79]  R. E. English and N. George, "Diffraction patterns in the shadows of disks and 

obstacles," Applied optics, vol. 27, no. 8, pp. 1581-1587, 1988.  

[80]  D. Paganin, Coherent X-Ray Optics, Oxford: Oxford University Press, 2006.  

[81]  H. Altwaijry and D. Hyland, "Detection and characterization of near Earth 

asteroids using stellar occultation," in AAS/AIAA Astrodynamics Specialist 

Conference, Hilton Head, South Carolina, 2013.  

[82]  V. Laude, "Diffraction analysis of pixelated incoherent shadow casting," Optics 

Communications, vol. 138, pp. 394-402, 1997.  

[83]  M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, New 

York: Dover, 1972, pp. 300-302. 

[84]  F. L. Pedrotti, L. M. Pedrotti and L. S. Pedrotti, Introduction to Optics, 3rd ed., 

Harlow: Pearson, 2014.  

[85]  "JAXA," [Online]. Available: 

http://www.isas.jaxa.jp/j/snews/2005/1101_hayabusa.shtml. [Accessed 2014]. 

[86]  R. H. Brown and R. Q. Twiss, "A new type of interferometer for use in radio 

astronomy," Nature, vol. 178, no. 4541, pp. 1046-1048, 1956.  

[87]  R. H. Brown, "Stellar Interferometer at Narrabri Observatory," Nature, vol. 218, 

pp. 637-641, 1968.  



155 

 

[88]  D. Dravins, S. LeBohec, H. Jensen and P. Nunez, "Optical intensity interferometry 

with the Cherenkov Telescope Array," Astroparticle Physics, vol. 43, pp. 331-

347, March 2013.  

 

 

  



156 

 

APPENDIX I – 2D PROJECTION MATLAB CODE 

The following Matlab (2013) functions generate a two-dimensional visualization of 

several phase retrieval methods. It includes the code to produce the plots shown 

previously. 

 

ProjectionPhaseRetrieval.m 

clear 

global mode; 

global a b; 

global C1 C2 R; 

  

%% 

% The type of case to run 

% Mode 1 is the intersection of two lines 

% Mode 2 has a line S domain and non-convex modulus domain 

% Mode 3 has a line S domain > 0 and a non-convex modulus domain 

mode = 1; 

  

% The number of iterations to perform 

iterations = 75; 

  

% The maximum relaxation value reached 

MaxLambda = 0.9; 

% The iteration to start increasing the relaxation parameter 

RelaxationStartIteration = 20; 

% The iteration to finish increasing the relaxation parameter 

RelaxationFinishIteration = 50; 

  

% The parameter for methods such as the HIO 

beta = 0.9; 

  

% Slope of the modulus line for mode 1 

a = 0.4; 

b = 0; 

  

% Position of the center of the modulus constraint circles for mode 2 and 3 

C1 = [0.5, -0.8]; 

%C1 = [0.5, -1.25]; 

C1 = [0.5, -1.35]; 

C2 = [C1(1)+cos(0.25)*R*2, C1(2)-sin(0.25)*R*2, 0.5]; 

  

% Radius of the modulus constraint circles for mode 2 and 3 

R = 1.25; 

  

% The initial image position 

g0 = [2.5, 0.0]; 

%g0 = [1.0, 0.0]; 

  

% Whether to show the error subplot 

ShowError = 1; 
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% The width of the lines on the plot 

LineWidth = 2; 

  

%% Define the image projection operators 

if mode == 3 

    Ps = @(p) [p(:,1), p(:,2)*0] .* [heaviside(p(:,1)) 1]; 

    Rs = @(p) (2*Ps(p) - p)  .* [heaviside(p(:,1)) 1]; 

else 

    Ps = @(p) [p(:,1), p(:,2)*0]; 

    Rs = @(p) (2*Ps(p) - p); 

end 

  

%% Find the intersection point 

  

if mode == 1 

   Intersection = [0 0]; 

elseif mode == 2 || mode == 3 

    if C1(2) + R > 0 

        Angle = asin(-C1(2)/R) 

        Intersection(1) = C1(1) + R*cos(Angle); 

    else 

        Intersection(1) = C1(1); 

    end 

    Intersection(2) = 0; 

end 

  

%% Allocate memory and parameters for plotting 

dist = []; 

p = []; 

colors = [0 0.5 0; 0 0.9 0; 0 1 1; 1 0 1; 0.75 1 0; 1 0.5 0; 0.5 0 1; ]; 

colors = [colors; colors]; 

algs = {'ER', 'SF', 'HIO', 'DM', 'ASR', 'HPR', 'RAAR'}; 

  

%% Plot domains 

  

figure(1) 

if ShowError 

    subaxis(2,1,1, 'Spacing', 0.03, 'PaddingTop', 0.01, 'PaddingLeft', 0.075,  

'PaddingRight', 0.075, 'PaddingBottom', 0.025, 'Margin', 0); 

else 

    subaxis(1,1,1, 'Spacing', 0.03, 'PaddingTop', 0.01, 'PaddingLeft', 0.075,  

'PaddingRight', 0.075, 'PaddingBottom', 0.025, 'Margin', 0); 

end 

cla 

hold on 

  

if mode == 1 

    plot(-2:0.1:3, a*(-2:0.1:3)+b, 'k-' ,'LineWidth', 2) 

    text(2.8,1.3,'M','FontSize',12,'Color','k') 

     

    plot(-(2*(mode~=3)):0.1:3, 0*(-(2*(mode~=3)):0.1:3), 'r-' ,'LineWidth', 2) 

    text(2.8,0.15,'S','FontSize',12,'Color','r') 

    grid on 

else 

    theta = -0.185:0.01:1.98; 

    plot(cos(theta)*R+C1(1), sin(theta)*R+C1(2), 'k-' ,'LineWidth', 2) 

    theta = 0.45:0.01:2.8; 

    plot(cos(theta)*R+C2(1), sin(theta)*R+C2(2), 'k-' ,'LineWidth', 2) 

    text(2.1,-0.8,'M','FontSize',12,'Color','k') 

     

    plot(-(1*(mode~=3)):0.1:4, 0*(-(1*(mode~=3)):0.1:4), 'r-' ,'LineWidth', 2) 

    text(3.8,0.25,'S','FontSize',12,'Color','r') 

    grid on 

end 

  

zlabel('Iteration') 

box on 
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set(gcf,'Color',[1 1 1]) 

  

text(g0(1)-0.01,g0(2)-0.15,['g_0'],'FontSize',10) 

  

if mode == 1 

    set(gca, 'XTick', -20:30); 

    set(gca, 'YTick', -20:20); 

    axis([-2 3 -2 2]) 

    set(gcf,'Position',[0 0 700 400]) 

else 

    set(gca, 'XTick', -10:10); 

    set(gca, 'YTick', -10:10); 

    axis([-1 4 -1 5]) 

    set(gcf,'Position',[0 0 700 800]) 

end 

xlabel('a) Algorithm Trajectories') 

  

%% Compute trajectories 

  

for j=1:length(algs) 

    alg = algs(j); 

    g = g0; 

         

    for i=1:iterations 

        g2 = g(end,:); 

         

        % Compute the current relaxation parameter 

        if i > RelaxationFinishIteration 

           lambda = MaxLambda; 

        elseif i > RelaxationStartIteration 

            lambda = MaxLambda * (i-RelaxationStartIteration) / 

(RelaxationFinishIteration - RelaxationStartIteration); 

        else 

            lambda = 0; 

        end 

  

        % Perform the projections for the current algorithm 

        if strcmp(alg, 'ER') 

            g(end+1,:) = Ps(Pm(g2, lambda)); 

        elseif strcmp(alg, 'SF') 

            g(end+1,:) = Rs(Pm(g2, lambda)); 

        elseif strcmp(alg, 'HIO') 

            temp1 = [g2; Pm(g2, lambda); Ps(Pm(g2, lambda)) ]; 

            temp2 = [g2; Pm(g2, lambda)]; 

            temp3 = g2 - beta*Pm(g2, lambda); 

  

            temp2(end+1,:) = [temp3(1) temp2(end,2)]; 

            temp2(end+1,:) = [temp3(1) temp3(2)];     

            g(end+1,:) = [temp1(end,1) temp2(end,2)]; 

  

%             Uncomment to show the intermediate steps of the HIO 

%             if i < 6 

%                 plot(temp1(:,1), temp1(:,2),'k-','LineWidth', 1) 

%                 plot(temp2(:,1), temp2(:,2),'k-','LineWidth', 1) 

%                  

%                 plot(temp1(end,1), temp1(end,2),'k x','MarkerSize', 10) 

%                 plot(temp2(end,1), temp2(end,2),'k x','MarkerSize', 10) 

%                  

%                 plot([temp1(end,1) temp1(end,1)], [temp1(end,2) 

temp2(end,2)],'LineStyle',':') 

%                 plot([temp2(end,1) temp1(end,1)], [temp2(end,2) 

temp2(end,2)],'LineStyle',':') 

%             end 

  

        elseif strcmp(alg, 'DM') 

            lambda = min(lambda, 0.2 + i/100); 

            gs = beta^-1; 
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            gm = -beta^-1; 

            g(end+1,:) = g2 + beta*Ps( (1+gs)*Pm(g2, lambda)-gs*g2 ) - beta*Pm( 

(1+gm)*Ps(g2)-gm*g2, lambda ); 

        elseif strcmp(alg, 'ASR') 

            g(end+1,:) = 1/2* (Rs(Rm(g2, lambda))+g2); 

        elseif strcmp(alg, 'HPR') 

            g(end+1,:) = (  Rs(Rm(g2, lambda) + (beta-1)*Pm(g2, lambda)) + g(end,:) + (1-

beta)*Pm(g2, lambda)  )/2; 

        elseif strcmp(alg, 'RAAR') 

            g(end+1,:) = 1/2*beta*(Rs(Rm(g2, lambda))+g2) + (1-beta)*Pm(g2, lambda); 

        elseif strcmp(alg, 'LS') 

             

            lambda2 = 0.9; 

            lambda2 = min(0.9, 0.2 + i/100);             

            if i==1 

                g(end+1,:) = Ps(Pm(g2, 0)); 

            else 

                Pm_relaxed = (1-lambda2)*g(end-1,:) + lambda2*g(end,:); 

                 

                g(end+1,:) = Ps(Pm_relaxed); 

            end 

        end 

    end 

     

    % Plot the path of the algorithm with the correct color and line style 

    if strcmp(algs{j}, 'HPR') || j > 7 

        p(end+1) = plot3(g(:,1),g(:,2),0:iterations,'k-.','LineWidth', 

LineWidth,'Color',colors(j,:)); 

    else 

        p(end+1) = plot3(g(:,1),g(:,2),0:iterations,'k-','LineWidth', 

LineWidth,'Color',colors(j,:)); 

    end 

    plot3(g(1:1:end,1),g(1:1:end,2),0:iterations,'k .','MarkerSize', 

15,'Color',colors(j,:)) 

     

    % Compute distance to the global intersection or minimum 

    dist(end+1,:) = sqrt((g(:,1) - Intersection(1)).^2 + g(:,2).^2); 

end 

  

legend('boxoff') 

legend(p, algs{1}, algs{2}, algs{3}, algs{4}, algs{5}, algs{6}, algs{7}, 

'Location','NorthEastOutside') 

  

%% Plot error for each algorithm 

if ShowError 

    subaxis(2,1,2, 'Spacing', 0.03, 'PaddingTop', 0.01, 'PaddingLeft', 0.075,  

'PaddingRight', 0.075, 'PaddingBottom', 0.075, 'Margin', 0); 

    cla 

    hold on 

  

    for j=1:length(algs) 

        if strcmp(algs{j}, 'HPR') || j > 7 

            semilogy(dist(j,:)','k-.','LineWidth', 2, 'Color', colors(j,:)) 

        else 

            semilogy(dist(j,:)','LineWidth', 2, 'Color', colors(j,:)) 

        end 

    end 

    xlim([0 iterations]) 

    xlabel(sprintf('Iteration\nb) Distance from the global minimum.')) 

    ylabel('Error') 

    set(gcf,'Position',[0 0 700 800]) 

end 
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Pm.m 

function [ P ] = Pm( p, lambda ) 

  

global mode; 

global a b; 

global C1 C2 R; 

  

if mode == 1 

    P = [(p(:,1)+(p(:,2)-b)*a)/(1+a^2), ((p(:,1)+(p(:,2)-b)*a)/(1+a^2))*a + b]; 

elseif mode == 2 || mode == 3 

    dist1 = sqrt( (p(1)-C1(1))^2 + (p(2)-C1(2))^2 ); 

    dist2 = sqrt( (p(1)-C2(1))^2 + (p(2)-C2(2))^2 ); 

     

    if dist1 <= dist2 

        angle = atan2(p(2)-C1(2), p(1)-C1(1)); 

         

        P = [cos(angle)*R+C1(1), sin(angle)*R+C1(2)];         

    else 

        angle = atan2(p(2)-C2(2), p(1)-C2(1)); 

         

        P = [cos(angle)*R+C2(1), sin(angle)*R+C2(2)];   

    end 

end 

  

P = (1-lambda)*P + lambda*p; 

  

end 

 

Rm.m 

function [ P ] = Rm( p, lambda ) 

  

P = 2*Pm(p, lambda) - p; 

  

end 

 

 

subaxis.m 

function h=subaxis(varargin) 

%SUBAXIS Create axes in tiled positions. (just like subplot) 

%   Usage: 

%      h=subaxis(rows,cols,cellno[,settings]) 

%      h=subaxis(rows,cols,cellx,celly[,settings]) 

%      h=subaxis(rows,cols,cellx,celly,spanx,spany[,settings]) 

% 

% SETTINGS: Spacing,SpacingHoriz,SpacingVert 

%           Padding,PaddingRight,PaddingLeft,PaddingTop,PaddingBottom 

%           Margin,MarginRight,MarginLeft,MarginTop,MarginBottom 

%           Holdaxis 

% 

%           all units are relative (e.g from 0 to 1) 

% 

%           Abbreviations of parameters can be used.. (Eg MR instead of MarginRight) 

%           (holdaxis means that it wont delete any axes below.) 

% 

% 

% Example: 

% 

%   >> subaxis(2,1,1,'SpacingVert',0,'MR',0);  

%   >> imagesc(magic(3)) 

%   >> subaxis(2,'p',.02); 

%   >> imagesc(magic(4)) 
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% 

% 2001 / Aslak Grinsted  (Feel free to modify this code.) 

f=gcf; 

  

Args=[]; 

UserDataArgsOK=0; 

Args=get(f,'UserData'); 

if isstruct(Args)  

    

UserDataArgsOK=isfield(Args,'SpacingHorizontal')&isfield(Args,'Holdaxis')&isfield(Args,'r

ows')&isfield(Args,'cols'); 

end 

OKToStoreArgs=isempty(Args)|UserDataArgsOK; 

  

if isempty(Args)&(~UserDataArgsOK) 

    Args=struct('Holdaxis',0, ... 

        'SpacingVertical',0.05,'SpacingHorizontal',0.05, ... 

        'PaddingLeft',0,'PaddingRight',0,'PaddingTop',0,'PaddingBottom',0, ... 

        'MarginLeft',.1,'MarginRight',.1,'MarginTop',.1,'MarginBottom',.1, ... 

        'rows',[],'cols',[]);  

end 

Args=parseArgs(varargin,Args,{'Holdaxis'},{'Spacing' {'sh','sv'}; 'Padding' 

{'pl','pr','pt','pb'}; 'Margin' {'ml','mr','mt','mb'}}); 

  

if (length(Args.NumericArguments)>1) 

    Args.rows=Args.NumericArguments{1}; 

    Args.cols=Args.NumericArguments{2}; 

%remove these 2 numerical arguments 

    Args.NumericArguments={Args.NumericArguments{3:end}}; 

end 

  

if OKToStoreArgs 

    set(f,'UserData',Args); 

end 

  

switch length(Args.NumericArguments) 

   case 0 

       return % no arguments but rows/cols....  

   case 1 

      x1=mod((Args.NumericArguments{1}-1),Args.cols)+1; x2=x1; 

      y1=floor((Args.NumericArguments{1}-1)/Args.cols)+1; y2=y1; 

   case 2 

      x1=Args.NumericArguments{1};x2=x1; 

      y1=Args.NumericArguments{2};y2=y1; 

   case 4 

      x1=Args.NumericArguments{1};x2=x1+Args.NumericArguments{3}-1; 

      y1=Args.NumericArguments{2};y2=y1+Args.NumericArguments{4}-1; 

   otherwise 

      error('subaxis argument error') 

end 

  

cellwidth=((1-Args.MarginLeft-Args.MarginRight)-(Args.cols-

1)*Args.SpacingHorizontal)/Args.cols; 

cellheight=((1-Args.MarginTop-Args.MarginBottom)-(Args.rows-

1)*Args.SpacingVertical)/Args.rows; 

xpos1=Args.MarginLeft+Args.PaddingLeft+cellwidth*(x1-1)+Args.SpacingHorizontal*(x1-1); 

xpos2=Args.MarginLeft-Args.PaddingRight+cellwidth*x2+Args.SpacingHorizontal*(x2-1); 

ypos1=Args.MarginTop+Args.PaddingTop+cellheight*(y1-1)+Args.SpacingVertical*(y1-1); 

ypos2=Args.MarginTop-Args.PaddingBottom+cellheight*y2+Args.SpacingVertical*(y2-1); 

  

if Args.Holdaxis 

    h=axes('position',[xpos1 1-ypos2 xpos2-xpos1 ypos2-ypos1]); 

else 

    h=subplot('position',[xpos1 1-ypos2 xpos2-xpos1 ypos2-ypos1]); 

end 

  

set(h,'box','on'); 
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set(h,'units',get(gcf,'defaultaxesunits')); 

set(h,'tag','subaxis'); 

  

if (nargout==0) clear h; end; 

  

parseArgs.m 

 

function ArgStruct=parseArgs(args,ArgStruct,varargin) 

% Helper function for parsing varargin.  

% 

% ArgStruct=parseArgs(varargin,ArgStruct[,FlagtypeParams[,Aliases]]) 

% 

% * ArgStruct is the structure full of named arguments with default values. 

% * Flagtype params is params that don't require a value. (the value will be set to 1 if 

it is present) 

% * Aliases can be used to map one argument-name to several argstruct fields 

% 

% example usage:  

% -------------- 

% function parseargtest(varargin) 

% 

% %define the acceptable named arguments and assign default values 

% Args=struct('Holdaxis',0, ... 

%        'SpacingVertical',0.05,'SpacingHorizontal',0.05, ... 

%        'PaddingLeft',0,'PaddingRight',0,'PaddingTop',0,'PaddingBottom',0, ... 

%        'MarginLeft',.1,'MarginRight',.1,'MarginTop',.1,'MarginBottom',.1, ... 

%        'rows',[],'cols',[]);  

% 

% %The capital letters define abrreviations.   

% %  Eg. parseargtest('spacingvertical',0) is equivalent to  parseargtest('sv',0)  

% 

% Args=parseArgs(varargin,Args, ... % fill the arg-struct with values entered by the user 

%           {'Holdaxis'}, ... %this argument has no value (flag-type) 

%           {'Spacing' {'sh','sv'}; 'Padding' {'pl','pr','pt','pb'}; 'Margin' 

{'ml','mr','mt','mb'}}); 

% 

% disp(Args) 

% 

% % Aslak Grinsted 2003 

  

Aliases={}; 

FlagTypeParams=''; 

  

if (length(varargin)>0)  

    FlagTypeParams=strvcat(varargin{1}); 

    if length(varargin)>1 

        Aliases=varargin{2}; 

    end 

end 

  

%---------------Get "numeric" arguments 

NumArgCount=1; 

while (NumArgCount<=size(args,2))&(~ischar(args{NumArgCount})) 

    NumArgCount=NumArgCount+1; 

end 

NumArgCount=NumArgCount-1; 

if (NumArgCount>0) 

    ArgStruct.NumericArguments={args{1:NumArgCount}}; 

else 

    ArgStruct.NumericArguments={}; 

end  

  

%--------------Make an accepted fieldname matrix (case insensitive) 

Fnames=fieldnames(ArgStruct); 

for i=1:length(Fnames) 
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    name=lower(Fnames{i,1}); 

    Fnames{i,2}=name; %col2=lower 

    AbbrevIdx=find(Fnames{i,1}~=name); 

    Fnames{i,3}=[name(AbbrevIdx) ' ']; %col3=abreviation letters (those that are 

uppercase in the ArgStruct) e.g. SpacingHoriz->sh 

    %the space prevents strvcat from removing empty lines 

    Fnames{i,4}=isempty(strmatch(Fnames{i,2},FlagTypeParams)); %Does this parameter have 

a value? (e.g. not flagtype) 

end 

FnamesFull=strvcat(Fnames{:,2}); 

FnamesAbbr=strvcat(Fnames{:,3}); 

  

if length(Aliases)>0   

    for i=1:length(Aliases) 

        name=lower(Aliases{i,1}); 

        FieldIdx=strmatch(name,FnamesAbbr,'exact'); %try abbreviations (must be exact) 

        if isempty(FieldIdx)  

            FieldIdx=strmatch(name,FnamesFull); %&??????? exact or not?  

        end 

        Aliases{i,2}=FieldIdx; 

        AbbrevIdx=find(Aliases{i,1}~=name); 

        Aliases{i,3}=[name(AbbrevIdx) ' ']; %the space prevents strvcat from removing 

empty lines 

        Aliases{i,1}=name; %dont need the name in uppercase anymore for aliases 

    end 

    %Append aliases to the end of FnamesFull and FnamesAbbr 

    FnamesFull=strvcat(FnamesFull,strvcat(Aliases{:,1}));  

    FnamesAbbr=strvcat(FnamesAbbr,strvcat(Aliases{:,3})); 

end 

  

%--------------get parameters-------------------- 

l=NumArgCount+1;  

while (l<=length(args)) 

    a=args{l}; 

    if ischar(a) 

        paramHasValue=1; % assume that the parameter has is of type 'param',value 

        a=lower(a); 

        FieldIdx=strmatch(a,FnamesAbbr,'exact'); %try abbreviations (must be exact) 

        if isempty(FieldIdx)  

            FieldIdx=strmatch(a,FnamesFull);  

        end 

        if (length(FieldIdx)>1) %shortest fieldname should win  

            [mx,mxi]=max(sum(FnamesFull(FieldIdx,:)==' ',2)); 

            FieldIdx=FieldIdx(mxi); 

        end 

        if FieldIdx>length(Fnames) %then it's an alias type. 

            FieldIdx=Aliases{FieldIdx-length(Fnames),2};  

        end 

         

        if isempty(FieldIdx)  

            error(['Unknown named parameter: ' a]) 

        end 

        for curField=FieldIdx' %if it is an alias it could be more than one. 

            if (Fnames{curField,4}) 

                val=args{l+1}; 

            else 

                val=1; %parameter is of flag type and is set (1=true).... 

            end 

            ArgStruct.(Fnames{curField,1})=val; 

        end 

        l=l+1+Fnames{FieldIdx(1),4}; %if a wildcard matches more than one 

    else 

        error(['Expected a named parameter: ' num2str(a)]) 

    end 

end 
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APPENDIX II – GAUSSIAN PHASE RETRIEVAL 

The following Matlab (2013) code generates a Gaussian basis image, computes its Fourier 

transform, and performs the phase retrieval algorithm on the Fourier transform data. 

 

GaussianPhaseRetrieval.m 

clear 

close all 

  

%% Parameters 

  

DoRetrieval = 1; 

ImageRes = 512; 

FTRes = 1024; 

FTRes_Low = 256; 

FTExtent = 0.5; 

  

%% True Image 

  

% Pieades Example 

Input = [... 

    2  ,105, 290;... 

    3  ,220, 275;... 

    2  ,298, 324;... 

    2  ,397, 275;... 

    2.5,336, 199;... 

    2.5,380, 170;... 

    1  ,405, 215;... 

    1  ,333, 143;... 

    1  ,100, 265;... 

    ]; 

  

% Diamond Example 

Input = [... 

    2  ,300, 200;... 

    2  ,175, 250;... 

    2  ,350, 250;... 

    2  ,300, 300]; 

  

Input(:,2) = Input(:,2) - mean(Input(:,2)) + ImageRes/2; 

Input(:,3) = Input(:,3) - mean(Input(:,3)) + ImageRes/2; 

  

N_Thetas = size(Input,1); 

Input = Input + [zeros(N_Thetas,1) ones(N_Thetas,1)*50 ones(N_Thetas,1)*50]; 

  

%% Generate sampled data from continuous image 

  

% Generate a sampled image from the true image 

TrueImage = MakeImageFromGaussians(Input, ImageRes); 

% Generate a sampled Fourier transform from the true Fourier transform 

TrueFT = MakeFTofGaussians(Input, FTRes, FTExtent); 

  

%% Find local maxima of frequency spectrum 
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disp('Starting finding Delta Thetas...') 

  

% Generate the spectrum of the sampled Fourier transform 

TrueMagSpect = abs(fftshift(fft2(abs(TrueFT).^2))); 

  

% Find maxima in spectrum and store the locations and heights 

RawEst_DeltaTheta2 = []; 

blocksize = 5; 

tic 

for i = 1+blocksize:(FTRes-blocksize) 

    for j=1+blocksize:(FTRes-blocksize) 

        if max(max(TrueMagSpect(j-blocksize:j+blocksize,i-blocksize:i+blocksize))) == 

TrueMagSpect(j,i) 

            RawEst_DeltaTheta2(end+1, :) = [i j TrueMagSpect(j,i)]; 

        end 

    end 

end 

  

% Sort maxima by their amplitude 

RawEst_DeltaTheta2 = sortrows(RawEst_DeltaTheta2, -3); 

% Remove trivial Gaussian at origin 

RawEst_DeltaTheta2(1,:) = []; 

% Only keep the n*(n-1) largest Gaussians 

RawEst_DeltaTheta2 = RawEst_DeltaTheta2(1:N_Thetas*(N_Thetas-1),1:3); 

% Translate into center of field of view 

RawEst_DeltaTheta2(:,1) = RawEst_DeltaTheta2(:,1) - (FTRes)/2-1; 

RawEst_DeltaTheta2(:,2) = -RawEst_DeltaTheta2(:,2) + (FTRes)/2+1; 

% Copy positions only 

RawEst_DeltaTheta = RawEst_DeltaTheta2(1:2:end,1:2); 

  

Est_N_Thetas = N_Thetas; 

  

disp('Finished finding Delta Thetas') 

  

%% Determine thetas from delta thetas 

  

if DoRetrieval 

    disp('Starting Solver...') 

     

    tic 

     

    % Solve for the estmated Gaussian locations 

    [Est_Theta, Est_DeltaTheta, Est_Error] = FindPairs( RawEst_DeltaTheta, Est_N_Thetas ) 

     

    % Translate image to center 

    Est_Theta(:,1) = Est_Theta(:,1) - mean(Est_Theta(:,1)) + ImageRes/2; 

    Est_Theta(:,2) = Est_Theta(:,2) - mean(Est_Theta(:,2)) + ImageRes/2; 

  

    % Create sampled versions of the estimated image and FT 

    EstImage = MakeImageFromGaussians([ones(Est_N_Thetas,1)*3 Est_Theta], ImageRes); 

    EstImageFT = single(MakeFTofGaussians([ones(Est_N_Thetas,1) Est_Theta], FTRes, 

FTExtent)); 

     

    toc 

  

    % Plot estimated image 

    EstImage = fliplr(EstImage); 

    figure(4) 

    image(1:ImageRes, 1:ImageRes, EstImage / max(max(abs(EstImage))) * 64) 

    title('Estimated Image') 

    colormap gray 

     

    disp('Solver Finished') 

end 

  

%% Output 
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figure(1) 

image(TrueImage / max(max(abs(TrueImage))) * 64) 

title('True Image') 

colormap gray 

  

figure(2) 

image(1:ImageRes, 1:ImageRes, (abs(TrueFT) / max(max(abs(TrueFT)))).^0.5 * 64) 

title('True Image FT') 

colormap gray 

     

figure(3) 

image((TrueMagSpect/max(max(abs(TrueMagSpect)))*64).^1.5*4) 

title('FT Mag Spectrum') 

colormap gray 

 

MakeFTofGaussians.m 

function [ FT ] = MakeFTofGaussians( Gaussians, FTRes, FTExtent ) 

  

N_Gaussians = size(Gaussians,1); 

  

FT = zeros(FTRes, FTRes); 

  

[U, V] = meshgrid(linspace(-FTExtent,FTExtent,FTRes),linspace(-FTExtent,FTExtent,FTRes)); 

  

for g=1:N_Gaussians 

    FT = FT + exp(-2*pi*1i*(Gaussians(g,2)*U + Gaussians(g,3)*V)) .* 

2*Gaussians(g,1)^2*pi .* exp(-2*Gaussians(g,1)^2*pi^2*(U.^2+V.^2)); 

end 

  

end 

 

MakeImageFromGaussians.m 

function [ Image ] = MakeImageFromGaussians( Gaussians, ImageRes ) 

  

N_Gaussians = size(Gaussians,1); 

  

Image = zeros(ImageRes,ImageRes); 

  

[x, y] = meshgrid(linspace(1,ImageRes,ImageRes),linspace(1,ImageRes,ImageRes)); 

  

for g=1:N_Gaussians 

    Image = Image + exp(-((x - Gaussians(g,2)).^2 + (y - 

Gaussians(g,3)).^2)./(2*Gaussians(g,1)^2)); 

end   

  

end 

 

FindPairs.m 

function [Est_Theta, Est_DeltaTheta, Est_Error] = FindPairs( RawEst_DeltaTheta, 

Est_N_Thetas ) 

  

RawEst_DeltaTheta = [0,0; RawEst_DeltaTheta; -RawEst_DeltaTheta]; 

N_DeltaThetas = length(RawEst_DeltaTheta); 

  

MainImageIndices = 3:N_DeltaThetas; 

  

%% Find initial increments 

Increment = RawEst_DeltaTheta(2,:) - RawEst_DeltaTheta(1,:); 

  

Indices = []; 
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for i=1:N_DeltaThetas 

    for j=1:N_DeltaThetas 

         

        TestIncrement = RawEst_DeltaTheta(j,:) - RawEst_DeltaTheta(i,:); 

        %abs(TestIncrement - Increment) 

        if(max(abs(TestIncrement - Increment)) <= 5) 

            Indices(end+1,:) = [i j]; 

        end 

         

    end 

end 

  

%% Recursively loop through next increments 

  

[Success, Indices] = NextIndex(MainImageIndices, RawEst_DeltaTheta, Indices, 

N_DeltaThetas, Est_N_Thetas); 

  

%% Output 

Est_Theta = RawEst_DeltaTheta(Indices(1,:),:); 

Est_DeltaTheta = 0; 

Est_Error = 0; 

  

end 

  

  

function [Success, Indices] = NextIndex(MainImageIndices, RawEst_DeltaTheta, Indices, 

N_DeltaThetas, Est_N_Thetas) 

  

Indices = [Indices zeros(size(Indices,1), 1)]; 

  

Success = 0; 

for AttempedIndex = MainImageIndices 

    Increment = RawEst_DeltaTheta(AttempedIndex,:) - RawEst_DeltaTheta(Indices(1,end-

1),:); 

     

    Indices(:,end) = 0; 

     

    for i=1:size(Indices,1) 

        for j=1:N_DeltaThetas 

            TestIncrement = RawEst_DeltaTheta(j,:) - RawEst_DeltaTheta(Indices(i,end-

1),:); 

             

            if(TestIncrement(1) == Increment(1) && TestIncrement(2) == Increment(2)) 

                Indices(i,end) = j; 

            end 

        end 

    end 

     

    if sum(Indices(:,end)>0) >= Est_N_Thetas 

        Success = 1; 

         

        if size(Indices,2) < Est_N_Thetas 

            [Success2, Indices2] = NextIndex(MainImageIndices(MainImageIndices ~= 

AttempedIndex), RawEst_DeltaTheta, Indices(Indices(:,end) ~= 0, :), N_DeltaThetas, 

Est_N_Thetas); 

             

            if Success2 

                Success = 1; 

                Indices = Indices2; 

            else 

                Success = 0; 

            end 

        else 

             

        end 

         

        if Success 
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            break; 

        else 

            % Subsequent iteration failed, this maxima was incorrect 

        end 

    end 

end 

  

end 

  



169 

 

APPENDIX III – OCCULTATION PHASE RETRIEVAL 

The following Matlab (2013) functions use a black and white bitmap image as the 

silhouette for an asteroid and produces a shadow pattern based on the specified parameters. 

The solver then attempts to recover the silhouette from the shadow pattern. The code 

includes the functionality to produce plots of each step of the process. The code here uses 

the helper functions in Appendix I for plotting. Included below are functions to compute 

Fresnel integrals. The function generateTables.m must be called before using the Fresnel 

integral functions. Included after the code are three bitmaps of the silhouette of Itokawa 

at 32x32, 64x64 and 128x128 resolutions. 

 

OccultationPhaseRetrieval.m 

%% Occultation Phase Retrieval 

clear 

clc 

% Start a matlab pool to use multipls cores and parfor loops 

if(matlabpool('size') < 2) 

    matlabpool 

end 

  

%% Paramters 

  

% true or false if should perform retrieval otherwise just shows the shadow pattern 

DoRetrieval = 1; 

% The maximum number of retrieval iterations 

Iterations = 3; 

% Whether to randomly pick a second pixel to test at each iteration 

RandomlyTestSecondPixel = 0; 

  

% Plot options 

ShowTrueShadowPattern = 1; 

ShowNoisyShadowPattern = 1; 

ShowSensorData = 0; 

ShowSensorPattern = 0; 

ShowErrorHistory = 0; 

ShowTrueErrorHistory = 0; 

ShowCurrentIteration = 1; 

  

% The number of apertures, use inf for unrestricted data 

NSensors = inf; 

% The angle from vertical of the sensor paths 

SensorPatternAngle = 0.05; % [rad] 
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% The standard deviation of the error in the position of the sensors 

SensorPositionErrorStdDev = 0; % [meters] 

  

% Resolution of the image of the silhouette 

ImgRes = 32; % [pixels] 

% Resolution of the shadow pattern 

IntRes = 128; % [pixels] 

% SNR of the intensity measurements 

IntensitySNR = 10; 

  

% Light wavelength 

lambda = 5.5e-7; % [meters] 

  

% The filename of the image used to create the shadow pattern 

ImageFilename = ['Itokawa' num2str(ImgRes) '.bmp']; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Enter range to the asteroid 

z = 1.00 * 149597871000; % [meters] (### * 1[au in meters]) 

F = (535/2)^2/z/lambda; 

%%%%%%%%%%%%%%   or   %%%%%%%%%%%%%% 

% Enter Fresnel Number 

%F = 0.87; 

%z = (535/2)^2/lambda/F; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

zl = z/lambda; 

  

%% Compute dimensional data and allocate memory 

% Compute the standard deviation of the noise based on the SNR 

if IntensitySNR == inf 

    noise_stddev = 0; 

else 

    noise_stddev = fzero(@(sigma) IntensitySNR - 1/(2*sigma*sqrt(1+2*sigma^2)),0.1) 

end 

ViewSize = 535/(80/128); % [m] 

PixSize = 535/(80/128*ImgRes); % [m] 

AngRes = PixSize / z; % [rad] 

AngView = AngRes * ImgRes; % [rad] 

  

ImgExtent = ViewSize / 2 / z; % [rad] 

IntExtent = 1000 / z; % [m/z] 

  

AngRes_AS = AngRes * 180/pi*60*60; % [arcsec] 

AngView_AS = AngView * 180/pi*60*60; % [arcsec] 

  

E = @(x)(fresnelS(x)+1i*fresnelC(x)); 

ImgPixelSize = ImgExtent*2/(ImgRes-1); 

IntPixelSize = IntExtent*2/(IntRes-1); 

[X,Y] = meshgrid(-ImgExtent:ImgPixelSize:ImgExtent,-ImgExtent:ImgPixelSize:ImgExtent); 

[U,V] = meshgrid(-IntExtent:IntPixelSize:IntExtent,-IntExtent:IntPixelSize:IntExtent); 

  

Js = zeros(size(U,2), size(U,1), ImgRes, ImgRes); 

  

%% Generate Image 

Img = mean(imread(ImageFilename),3)/255; 

  

%% Generate diffraction pattern for every pixel as if they're all lit. 

tic 

disp('Starting generating pixel contributions to shadow pattern...') 

parfor i = 1:ImgRes 

    for j = 1:ImgRes 

        Js(:,:,i,j) = 1/2* ( ... 

            E(sqrt(2*zl)*(ImgPixelSize + X(i,j) - U)) -... 

            E(sqrt(2*zl)*(             + X(i,j) - U)) ... 

            ) .* ( ... 

            E(sqrt(2*zl)*(ImgPixelSize + Y(i,j) - V)) -... 
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            E(sqrt(2*zl)*(             + Y(i,j) - V)) ... 

            ); 

    end 

end 

disp('Finished generating pixel contributions to shadow pattern.') 

toc 

  

%% Generate true diffraction pattern for image using pixel contributions. 

J = 1i - squeeze(sum(Js(:,:,~logical(Img)),3)); 

Psi = abs(J).^2; 

  

Psi2 = abs(Psi + (randn(size(Psi)) + 1i*randn(size(Psi)))*noise_stddev); 

  

% Plots 

figure(1) 

colormap gray 

image(X(1,:)*180/pi*60*60,Y(:,1)*180/pi*60*60,Img*64) 

title('True Image: \Gamma(x_a,y_a)') 

xlabel('\theta_x [arcsec]') 

ylabel('\theta_y [arcsec]') 

  

if ShowTrueShadowPattern 

    if 0 

        figure(2) 

        subaxis(1,1,1, 'Spacing', 0.02, 'PaddingTop', 0.08, 'PaddingLeft', 0.13,  

'PaddingRight', 0.3, 'PaddingBottom', 0.12, 'Margin', 0); 

        colormap gray 

        image(U(1,:)*z,V(:,1)*z,Psi / max(max(Psi))*64) 

        title(sprintf('z = %.2f [au], F = %.2f',z/149597871000,F),'FontSize',15) 

        xlabel('X [m]','FontSize',15) 

        ylabel('Y [m]','FontSize',15) 

         

        subaxis(1,1,1, 'Spacing', 0.02, 'PaddingTop', 0.08, 'PaddingLeft', 0.82,  

'PaddingRight', 0.15, 'PaddingBottom', 0.12, 'Margin', 0); 

        plot([0 0], [eps z/149597871000],'b-','LineWidth',10,'Color',[60/255 0 0]) 

        ylim([0.008 50]) 

        ylabel('z [au]','FontSize',15) 

        set(gca, 'YScale', 'log') 

        set(gca, 'XTick', []); 

        set(gca, 'YTick', [0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50]); 

        set(gca, 'YMinorTick', 'off'); 

         

        subaxis(1,1,1, 'Spacing', 0.02, 'PaddingTop', 0.08, 'PaddingLeft', 0.96,  

'PaddingRight', 0.01, 'PaddingBottom', 0.12, 'Margin', 0); 

        plot([0 0], [eps F],'b-','LineWidth',10,'Color',[60/255 0 0]) 

        ylim([0.008 100]) 

        ylabel('F','FontSize',15) 

        set(gca, 'YScale', 'log') 

        set(gca, 'XTick', []); 

        set(gca, 'YTick', [0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100]); 

        set(gca, 'YMinorTick', 'off'); 

         

         

        temp = get(gcf,'PaperPosition') 

        set(gcf,'PaperPosition', [0 0 10.66666666666 6]) 

        print(gcf, '-dpng', ['F' sprintf('%07.3f',F) '.png']); 

    else 

        figure(2) 

        colormap gray 

        image(U(1,:)*z,V(:,1)*z,Psi / max(max(Psi))*64) 

        xlabel('X [m]') 

        ylabel('Y [m]') 

        title('True Shadow Pattern') 

    end 

end 

  

if ShowNoisyShadowPattern 
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    figure(3) 

    colormap gray 

    image(U(1,:)*z,V(:,1)*z,Psi2 / max(max(Psi2))*64) 

    title(['Noisy Shadow Pattern']) 

    xlabel('X [m]') 

    ylabel('Y [m]') 

end 

  

if NSensors == inf 

    SensorPattern = ones(IntRes, IntRes); 

    SensorPatternPix = []; 

     

    for x = 1:IntRes 

        for y = 1:IntRes 

            SensorPatternPix(end+1,:) = [((x-1)*IntRes) + y, ((x-1)*IntRes) + y]; 

        end 

    end 

else 

    SensorPattern = zeros(IntRes, IntRes); 

    SensorPatternPix = []; 

         

    for i=0:NSensors-1 

         

        MidPos = IntRes/2 + (i-NSensors/2+0.5)/NSensors*2*IntRes/2 * 0.75; 

        MidPosEr = IntRes/2 + (i-NSensors/2+0.5)/NSensors*2*IntRes/2 * 0.75 + randn(1) * 

IntRes / (IntExtent*2*z) * SensorPositionErrorStdDev; 

         

        for y=1:IntRes 

             

            x = round(MidPos + sin(SensorPatternAngle) * (y-IntRes/2)); 

            xEr = round(MidPosEr + sin(SensorPatternAngle) * (y-IntRes/2)); 

             

            if x <= IntRes && x > 0 && y <= IntRes && y > 0 && xEr <= IntRes && xEr > 0 

                SensorPatternPix(end+1,:) = [((x-1)*IntRes) + y, ((xEr-1)*IntRes) + y]; 

                SensorPattern(y,xEr) = 1; 

            end 

        end 

    end 

end 

  

if ShowSensorPattern 

    figure(7) 

    colormap gray 

    image(U(1,:)*z,V(:,1)*z,SensorPattern*64) 

    xlabel('X [m]') 

    ylabel('Y [m]') 

    title('Sensor Pattern') 

end 

if ShowSensorData 

    figure(8) 

    colormap([[linspace(0,1,64) 1]', [linspace(0,1,64) 0]', [linspace(0,1,64) 0]']); 

    image(U(1,:)*z,V(:,1)*z, (SensorPattern.*Psi2 / max(max(Psi2))*64 + (1-

SensorPattern)*65) ) 

    xlabel('X [m]') 

    ylabel('Y [m]') 

    title('Sensor Data') 

end 

  

%% Performs the phase retrieval 

if DoRetrieval 

    %% Initialize plots 

    if ShowErrorHistory 

        figure(5) 

        temp = get(gcf,'Position'); 

        set(gcf,'Position',[temp(1) temp(2) temp(3) 250]) 

        %set(gcf,'PaperPosition', [temp(1) temp(2) temp(3) 250]) 

    end 
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    if ShowTrueErrorHistory 

        figure(6) 

        temp = get(gcf,'Position'); 

        set(gcf,'Position',[temp(1) temp(2) temp(3) 250]) 

    end 

     

    %% Allocate Memory 

    Error = inf; 

    ErrorHistory = []; 

    TrueErrorHistory = []; 

    PsiEst = zeros(size(U)); 

    Trials = 0; 

     

    %% Initial Estimate 

     

    % Blank image 

    ImgEst = ones(size(X)); 

     

    % if(exists('ImgEst_Save')) 

    %    ImgEst = ImgEst_Save; 

    % end 

     

    % Read in 32x32 image and resize it to 64x64 to use as the input to the 64x64 

estimation 

    % Img32 = mean(imread('Itokawa32.bmp'),3)/255; 

    % ImgEst = round(imresize(Img32,[64 64],'bilinear')); 

     

    %% Solve 

    i = 0; 

    j = 1; 

    tic 

    for Iteration = 1:Iterations 

        for Trial = 1:ImgRes^2 

             

            i = i + 1; 

            if i > ImgRes 

                i = 1; 

                j = j + 1; 

                if j > ImgRes 

                    j = 1; 

                end 

            end 

             

            TrialImgEst = ImgEst; 

            TrialImgEst(i,j) = ~ImgEst(i,j); 

             

            if RandomlyTestSecondPixel 

                ir = 0; 

                jr = 0; 

                if rand(1) > 0.9 && Iteration == 1 

                    ir = round(rand(1)*(ImgRes-1)+1); 

                    jr = round(rand(1)*(ImgRes-1)+1); 

                    TrialImgEst(ir,jr) = ~ImgEst(ir,jr); 

                end 

            end 

             

            TrialPsiEst = abs(1i - squeeze(sum(Js(:,:,~logical(TrialImgEst)),3))).^2; 

            NewError = sum(sum(abs(Psi2(SensorPatternPix(:,1)) - 

TrialPsiEst(SensorPatternPix(:,2))))); 

             

            if Trials == 0 

                Error = NewError; 

            end 

             

            if NewError < Error 

                ImgEst = TrialImgEst; 
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                PsiEst = TrialPsiEst; 

                Error = NewError; 

            end 

             

            % Adding eps makes the value never exactly zero so it will plot on log scale 

correctly 

            TrueErrorHistory(end+1) = sum(sum(abs(Psi - PsiEst))) + eps;  

            ErrorHistory(end+1) = Error + eps; 

             

            if rem(Trial,ImgRes) == 0 || Trial == 1 || 1 

                if ShowErrorHistory 

                    figure(5) 

                    semilogy((1:length(ErrorHistory))/ImgRes/ImgRes, 

ErrorHistory,'LineWidth', 3) 

                    xlim([0 Iterations]) 

                    ylim([max([10 10^floor(log10(min(ErrorHistory)))]) 

10^ceil(log10(max(ErrorHistory)))]) 

                    xlabel('Iteration') 

                    ylabel('Error') 

                end 

                if ShowCurrentIteration 

                    figure(100) 

                    clf 

                    axes('Position',[0.25 0.45 0.5 0.5]) 

                    temp = ImgEst; 

                    temp(i,j) = 0.5; 

                    if RandomlyTestSecondPixel 

                        if(ir > 0 && jr > 0) 

                            temp(ir,jr) = 0.5; 

                        end 

                    end 

                    image(X(1,:)*180/pi*60*60,Y(:,1)*180/pi*60*60,temp*4); 

                    colormap([0 0 0; 1 0 0; 1 1 1]) 

                    xlabel('\theta_x [arcsec]','FontSize',18) 

                    ylabel('\theta_y [arcsec]','FontSize',18) 

                     

                    axes('Position',[0.25 0.1 0.5 0.25]) 

                    semilogy((1:length(ErrorHistory))/ImgRes/ImgRes, 

ErrorHistory,'LineWidth', 3) 

                    xlim([0 Iterations]) 

                    ylim([max([10 10^floor(log10(min(ErrorHistory)))]) 

10^ceil(log10(max(ErrorHistory)))]) 

                    xlabel('Iteration','FontSize',18) 

                    ylabel('Error','FontSize',18) 

                    temp = get(gcf,'Position'); 

                    set(gcf,'Position',[temp(1) temp(2) temp(3) 700]) 

                    set(gcf,'PaperPosition', [0 0 576 432]) 

                    %print(gcf, '-dpng', ['Iter' num2str(sprintf('%5.5d',Trials)) 

'.png']); 

                end 

                if ShowTrueErrorHistory 

                    figure(6) 

                    semilogy((1:length(TrueErrorHistory))/ImgRes/ImgRes, 

TrueErrorHistory,'LineWidth', 3) 

                    xlim([0 Iterations]) 

                    ylim([max([10 10^floor(log10(min(TrueErrorHistory)))]) 

10^ceil(log10(max(TrueErrorHistory)))]) 

                    xlabel('Iteration') 

                    ylabel('True Error') 

                end 

                 

                pause(eps);                 

                if TrueErrorHistory(end) < 10*eps 

                    break 

                end 

            end 
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            Trials = Trials + 1; 

        end 

         

        if TrueErrorHistory(end) < 10*eps 

            break 

        end 

    end 

    toc 

end 

 

fresnelS.m 

function FSint = fresnelS(X,fresnelType) 

% fresnelS - Fresnel sine integrals, S(X), S1(X), or S2(X) 

% usage: FSint = fresnelS(X,fresnelType) 

% 

% Fresnel sine integrals fall into three classes, simple 

% transformations of each other. All three types described 

% by Abramowitz & Stegun are supported. 

% 

% The maximum error of this code has been shown to be less 

% than (approximately) 1.5e-14 for any value of X. 

% 

% arguments: (input) 

%  X - Any real, numeric value, vector, or array thereof. 

%      X is the upper limit of the Fresnel sine integral. 

% 

%  fresnelType - scalar numeric flag, from the set {0,1,2}. 

%       

%      The type 0 Fresnel sine integral (A&S 7.3.1) 

%        S(x) = \int_0^x sin(pi*t^2/2) dt,  

% 

%      Type 1 (A&S  7.3.3a) 

%        S_1(x) = \sqrt(2/pi) \int_0^x sin(t^2) dt 

% 

%      Type 2 (A&S  7.3.3b) 

%        S_2(x) = \sqrt(1/2/pi) \int_0^x sin(t) / \sqrt(t) dt 

% 

% arguments: (output) 

%  FSint - array of the same size and shape as X, containing 

%      the indicated Fresnel sine integral values. 

% 

% REFERENCES 

% [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Error Function and Fresnel  

%     Integrals." Ch. 7 in Handbook of Mathematical Functions with 

%     Formulas, Graphs, and Mathematical Tables, 9th printing. New York: 

%     Dover, pp. 295-329, 1970.   

% 

% [2] Mielenz, K. D.; "Computation of Fresnel Integrals", Journal of 

%     Research of the National Institute of Standards and Technology, 

%     Vol 102, Number 3, May-June 1997 

%        http://nvl.nist.gov/pub/nistpubs/jres/102/3/j23mie.pdf 

  

persistent FSspl 

  

if (nargin < 1) || (nargin > 2) 

  error('FRESNELS:improperarguments','1 or 2 arguemtns are required.') 

end 

  

% default for fresnelType 

if (nargin < 2) || isempty(fresnelType) 

  fresnelType = 0; 

else 

  if ~isnumeric(fresnelType) || ~ismember(fresnelType,[0 1 2]) || (numel(fresnelType) ~= 

1) 

    error('FRESNELS:fresnelType', ... 
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      'fresnelType must be scalar, one of {0,1,2} if supplied.') 

  end 

end 

  

% X must be real, but of any shape. 

if any(imag(X) ~= 0) 

  warning('FRESNELS:complexarguments','X should be real. Imaginary part will ignored.') 

  X = real(X); 

end 

  

% preallocate FSint to the proper size 

FSint = zeros(size(X)); 

  

% flag any negative X, make it positive. 

S = X < 0; 

X(S) = -X(S); 

  

% transform the type 1 and 2 problems into type 0 

switch fresnelType 

  case 1 

    X = sqrt(2/pi)*X; 

  case 2 

    X = sqrt(2*X/pi); 

end 

  

% The upper limit of the tables is 7.5. 

Xlim = 7.5; 

% klim is a boolean variable that indicates values that exceed Xlim. 

klim = (X > Xlim); 

if any(klim(:)) 

  % we found some values that exceed the limit. Use 

  % the rational approximations provided in Mielenz [2] 

  % for the associated functions f(z) (see (4a)) and 

  % g(z) (see (4b)). The approximations are carried to 

  % additional terms beyond that displayed in Mielenz. 

  % 

  % For abs(X) >= 7.5, these yield results with 

  % roughly 15 significant digits. 

  xk = X(klim); 

   

  FSint(klim) = 0.5 - (1 - 3/pi^2 ./xk.^4 + 105/pi^4 ./xk.^8 - ... 

    10395/pi^6 ./xk.^12 + 2027025/pi^8 ./xk.^16).*cos(pi/2*xk.^2)./(pi*xk) - ... 

    (1 - 15/pi^2 ./xk.^4 + 945/pi^4 ./xk.^8 - 135135/pi^6 ./xk.^12 + ... 

    34459425/pi^8 ./xk.^16).*sin(pi/2*xk.^2)./(pi^2*xk.^3); 

   

end 

klim = ~klim; 

  

% for abs(Xlim) <= Xlim, we will use a spline interpolant of the 

% sine integral itself. 

if any(klim(:)) 

  % have we loaded the appropriate spline? 

  if isempty(FSspl) 

    load _Fresnel_data_ FSspl 

  end 

   

  % do the interpolation itself using ppval. This will be 

  % better than calling interp1 with the 'spline' option, 

  % since it avoids overhead of calling an already created 

  % and stored spline. It will be better than pchip or the 

  % 'cubic' option for interp1 since the spline will be 

  % considerably more accurate. 

  FSint(klim) = ppval(FSspl,X(klim)); 

end 

  

% The Fresnel sine and cosine integrals are odd functions of X, 

% so swap signs for any negative X. 



177 

 

FSint(S) = - FSint(S); 

  

end % mainline end 

 

fresnelC.m 

function FCint = fresnelC(X,fresnelType) 

% fresnelC - Fresnel cosine integrals, C(X), C1(X), or C2(X) 

% usage: FCint = fresnelC(X,fresnelType) 

% 

% Fresnel cosine integrals fall into three classes, simple 

% transformations of each other. All three types described 

% by Abramowitz & Stegun are supported. 

% 

% The maximum error of this code has been shown to be less 

% than 1.5e-14 for any value of X. 

  

persistent FCspl 

  

if (nargin < 1) || (nargin > 2) 

  error('FRESNELC:improperarguments','1 or 2 arguemtns are required.') 

end 

  

% default for fresnelType 

if (nargin < 2) || isempty(fresnelType) 

  fresnelType = 0; 

else 

  if ~isnumeric(fresnelType) || ~ismember(fresnelType,[0 1 2]) || (numel(fresnelType) ~= 

1) 

    error('FRESNELC:fresnelType', ... 

      'fresnelType must be scalar, one of {0,1,2} if supplied.') 

  end 

end 

  

% X must be real, but of any shape. 

if any(imag(X) ~= 0) 

  warning('FRESNELC:complexarguments','X should be real. Imaginary part will ignored.') 

  X = real(X); 

end 

  

% preallocate FCint to the proper size 

FCint = zeros(size(X)); 

  

% flag any negative X, make it positive. 

S = X < 0; 

X(S) = -X(S); 

  

% transform the type 1 and 2 problems into type 0 

switch fresnelType 

  case 1 

    X = sqrt(2/pi)*X; 

  case 2 

    X = sqrt(2*X/pi); 

end 

  

% The upper limit of the tables is 7.5. 

Xlim = 7.5; 

% klim is a boolean variable that indicates values that exceed Xlim. 

klim = (X >= Xlim); 

if any(klim(:)) 

  % we found some values that exceed the limit. Use 

  % the rational approximations provided in Mielenz [2] 

  % for the associated functions f(z) (see (4a)) and 

  % g(z) (see (4b)). The approximations are carried to 

  % additional terms beyond that displayed in Mielenz. 

  % 
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  % For abs(X) >= 7.5, these yield results with 

  % roughly 15 significant digits. 

  xk = X(klim); 

   

  FCint(klim) = 0.5 + (1 - 3/pi^2 ./xk.^4 + 105/pi^4 ./xk.^8 - ... 

    10395/pi^6 ./xk.^12 + 2027025/pi^8 ./xk.^16).*sin(pi/2*xk.^2)./(pi*xk) - ... 

    (1 - 15/pi^2 ./xk.^4 + 945/pi^4 ./xk.^8 - 135135/pi^6 ./xk.^12 + ... 

    34459425/pi^8 ./xk.^16).*cos(pi/2*xk.^2)./(pi^2*xk.^3); 

   

end 

klim = ~klim; 

  

% for abs(Xlim) <= Xlim, we will use a spline interpolant of the 

% cosine integral itself. 

if any(klim(:)) 

  % have we loaded the appropriate spline? 

  if isempty(FCspl) 

    load _Fresnel_data_ FCspl 

  end 

   

  % do the interpolation itself using ppval. This will be 

  % better than calling interp1 with the 'spline' option, 

  % since it avoids overhead of calling an already created 

  % and stored spline. It will be better than pchip or the 

  % 'cubic' option for interp1 since the spline will be 

  % considerably more accurate. 

  FCint(klim) = ppval(FCspl,X(klim)); 

end 

  

% The Fresnel sine and cosine integrals are odd functions of X, 

% so swap signs for any negative X. 

FCint(S) = - FCint(S); 

  

end % mainline end 

  

generateTables.m – To be called once before using fresnelC.m and fresnelS.m 

% =============================================================== 

%     Code used only to generate and save the integral tables 

% =============================================================== 

function generateTables 

  

% Generate the integral tables, more accurate than Abramowitz & 

% Stegun provide, since they give only 7 digits. 

FresnelCObj = @(t) cos(pi*t.^2/2); 

FresnelSObj = @(t) sin(pi*t.^2/2); 

  

p = 1.75; 

T0 = linspace(1,7.5.^p,501).' .^(1/p); 

dt = T0(2) - T0(1); 

T0 = [linspace(0,1 - dt,ceil(1./dt))';T0]; 

plot(diff(T0)) 

  

n = length(T0); 

FC75 = zeros(n,1); 

FS75 = zeros(n,1); 

  

h = waitbar(0,'Computing Fresnel integrals'); 

for i = 2:n 

  waitbar(i/n,h) 

  FC75(i) = quadgk(FresnelCObj,0,T0(i),'abstol',1.e-16,'reltol',100*eps('double')); 

  FS75(i) = quadgk(FresnelSObj,0,T0(i),'abstol',1.e-16,'reltol',100*eps('double')); 

end 

delete(h) 

  

% Turn them into splines, then save the splines. These splines are 
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% first built in a Hermite form, since I can supply the 1st and second 

% derivatives of the function. Then I turn them into a pp form, for use 

% in fresnelC and fresnelS. 

FCspl = hermite2slm([T0,FC75,FresnelCObj(T0), -pi*T0.*sin(pi*T0.^2/2), ... 

  -pi*(sin(pi*T0.^2/2) + pi*T0.^2 .*cos(pi*T0.^2/2))]); 

FCspl = slm2pp(FCspl); 

  

FSspl = hermite2slm([T0,FS75,FresnelSObj(T0),pi*T0.*cos(pi*T0.^2/2), ... 

  pi*(cos(pi*T0.^2/2) - pi*T0.^2 .*sin(pi*T0.^2/2))]); 

FSspl = slm2pp(FSspl); 

  

save _Fresnel_data_ FCspl FSspl 

  

  

% test the result 

clear functions 

  

n = 1000; 

T = sort(rand(n,1)*10); 

FCquad = zeros(n,1); 

FSquad = zeros(n,1); 

for i = 1:n 

  FCquad(i) = quadgk(FresnelCObj,0,T(i),'abstol',1.e-16); 

  FSquad(i) = quadgk(FresnelSObj,0,T(i),'abstol',1.e-16); 

end 

FCpred = fresnelC(T,0); 

FSpred = fresnelS(T,0); 

  

subplot(1,2,1) 

plot(T,FCquad - FCpred,'.') 

grid on 

subplot(1,2,2) 

plot(T,FSquad - FSpred,'.') 

grid on 

  

end 

  

  

 

 


