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ABSTRACT 

 As astronomers and astrophysicists seek to view ever-increasingly distant celestial 

objects, the desired angular resolution of telescopes is constantly being increased. 

Classical optics, however, has shown a proportional relationship between the size of an 

optical telescope and the possible angular resolution. Experience has also shown that 

prohibitive cost accompanies large optical systems. With these limitations on classical 

optical systems and with the drastic increase in computational power over the past 

decade, intensity correlation interferometry (ICI) has seen renewed interest since the 

1950’s and 60’s when it was initially conceived by Hanbury Brown and Twiss. Intensity 

correlation interferometry has the advantage of less stringent equipment precision and 

less equipment cost when compared to most other forms of interferometry. ICI is thus 

attractive as a solution to the desire for high angular resolution imaging especially in 

space based imaging systems.  

 Optical interferometry works by gathering information about the Fourier 

transform of the geometry of an optical source. An ICI system, however, can only detect 

the magnitude of the Fourier components. The phase of the Fourier components must be 

recovered through some computational means and typically some a priori knowledge of 

the optical source. 

 This thesis gives the physics and mathematical basis of the intensity correlation 

interferometer. Since the ICI system cannot detect the phase of an optical source’s 

Fourier transform, some known methods for recovering the phase information are 
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discussed. The primary method of interest here is the error-reduction algorithm by 

Gerchberg-Saxton which was adapted by Fienup to phase retrieval. This algorithm works 

by using known qualities of the image as constraints; however, sometimes it can be 

difficult to know what these constraints are supposed to be. A method of adaptively 

discovering these constraints is presented, and its performance is evaluated in the 

presence of noise. Additionally, an algorithm is presented to adapt to the presence of 

noise in the Fourier modulus data. Finally, the effects of the initial condition of the error-

reduction algorithm are shown and a method of mitigating its effect by averaging several 

independent solutions together is shown. 
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NOMENCLATURE 

...    Ensemble average operator 

...
T

   Time average operator 

D   Aperture diameter 

E   Electromagnetic field 

    Mutual coherence magnitude 

I   Electromagnetic field intensity 

ICI   Intensity correlation interferometry 

J   Mutual coherence 

    Light wavelength 

MTF   Modulation transfer function 

O   Observation plane 

OTF,  ˆ . . .O   Optical transfer function 

    Angular frequency of light 

    Phase of a complex value 

RMS   Root Mean Squared 

S   Far field source object’s plane 

SNR   Signal-to-noise ratio 

    Angular view coordinate 

UV   Fourier domain coordinates  
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1. INTRODUCTION 

 An interferometer is an apparatus that measures the coherence between two 

points in a wave field. The knowledge of the wave field’s coherence at the two spatial 

locations can yield knowledge about the source of the field. When the physics of wave 

propagation are known and the interference pattern of a wave field is known, the 

geometry of the wave field’s source can be determined with great accuracy.  

 Interferometry has evolved over the past three centuries from the classical 

double-slit experiment to optical interferometers such the Michelson interferometer. The 

object of study here is the intensity correlation interferometer (ICI) as developed by 

Hanbury Brown and Twiss in the 1950s [1, 2, 3]. The ICI has several advantages over 

traditional optical interferometers; however, it does not capture the phase of the complex 

valued interference pattern. Rather, it only captures the magnitude. This leads to a need 

to estimate or retrieve the phase information—the so called ‘phase retrieval’ problem. 

The phase retrieval problem has been studied by physicists and mathematicians for 

various applications in astronomy, crystallography, and electron microscopy to name a 

few. Here the phase retrieval problem is applied to forming an image of astronomical 

bodies. 

 In section 2 the physics behind wave propagation and interference is presented. 

These fundamentals are used to derive the theory behind a general interferometer. The 

relationship between the geometry of a light source and its Fourier transform are 

discussed in section 2.3. The reason interferometry is attractive over traditional optics is 
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discussed in section 2.4. Section 2.4 uses the fundamentals explained previously and 

applies them to the intensity correlation interferometer. Some conventional methods for 

phase retrieval and several fields of study where phase retrieval is used are discussed in 

Section 3. Section 4 presents the collapsing foreground algorithm, the relaxed constraint 

algorithm, and the average image algorithm for phase retrieval. These algorithms build 

on the methods presented in section 3. Section 5 shows the performance of these three 

algorithms and attempts to qualify them as viable methods for phase retrieval. Some 

methods for programing these algorithms to decrease their computation time are also 

briefly discussed. Finally, Section 6 concludes by summarizing the phase retrieval 

problem and the algorithms presented in this thesis. 
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2. INTERFEROMETRY 

 Interferometry owes its existence to the wave properties of light. The wave 

theory of light was developed through the observation of fringe patterns seen when 

interfering light from two sources. Some of the first observations and theory were 

developed by Hooke, Huygens, and Frensel [4]. In 1665 Hooke observed wave 

interference phenomena in soap bubbles and oil on water; however, he was not able to 

definitively explain his observations in his book Micrographia [5]. Hooke first observed 

‘Newton’s rings’ which are simple interference patterns visible when a convex lens is 

placed next to a flat surface; however, Newton’s explanations followed the flawed 

corpuscular theory (particle theory) of light [6]. In 1678, Huygens proposed the wave 

theory of light. His theory includes the statement that every point illuminated by light 

becomes a point source. Fresnel’s work built on Huygens’s work and made some big 

contributions to the understanding of light by using the wave model to explain the laws 

of reflection, refraction, and double refraction. Their combined work, later called the 

Huygens-Fresnel principle, rigorously explained the wave nature of light. It was Thomas 

Young who experimentally captured the wave nature of light in his famous double-slit 

experiment which he presented to the Royal Society of London in 1801 [7]. He observed 

that the interference pattern of light from a source corresponds to the geometry of the 

source. In the 1930s it was found that taking the inverse Fourier transform of the 

interference pattern can recover the geometry of the light source according to the van 

Cittert-Zernike theorem thus forming the basis of modern interferometry [8, 9]. 



4 

 

2.1. Double-Slit Experiment 

 Thomas Young developed an experiment to demonstrate that light behaves 

indisputably as a wave and not solely as a particle as was the belief in his era. His 

experiment consisted of a light source, two walls with small opening for the light to pass 

through, and a solid plane to observe the light after passing through the slits [7]. This 

comprised the first and simplest interferometer. 

 
Fig. 1. Schematic of Thomas Young's double-slit experiment. 

 The purpose of the first single slit is to arrange the waves of light from the sun 

into wave-fronts, i.e. the light appears to come from a single point source located at the 

first slit as explained by Huygens’s theory of light [10]. These wave-fronts then hit the 

second wall with the double slits. The waves then emanate from the two slits and hit the 

observation plane. Again, the second slits behave as point sources of light. Looking at 

the geometry of this experiment in Fig. 1, no light would be visible in the center of the 

Observation Plane 

Wave-fronts 

Narrow slits (x3) 

 

Sunlight 
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observation plane if light behaves according to Newton’s particle theory of light. The 

particle theory states that the light would travel in straight lines; however, Young saw an 

interference pattern across the observation plane. The details of the interference pattern 

will be explained further in section 2.2. 

 A simplistic explanation of the double-slit experiment from the particle view can 

be developed with a statistical representation of photons [6]. A single photon going 

through the first slit has equal probability of going through either slit in the second wall. 

Max Born’s 1954 Nobel Prize work described the state of the interferometer at a point in 

time as the probability of finding a photon at a given position. The photon must then not 

be considered as a particle with some location, but rather as a particle with probability of 

being somewhere in space. With this concept in mind, the photon can be thought of as 

having equal probability of being in two places at the same time. The probabilistic field 

that describes the position of the photon allows the photon to essentially interfere with 

itself by going through both slits. As subsequent photons go through the interferometer, 

an interference pattern emerges even though only one photon goes through the slits at a 

time. A caveat in proving this concept experimentally lies in trying to track a single 

photon through the interferometer. The probability field concept breaks down, because 

only a single realization of the probability field is detected. This breakdown is described 

by the Heisenberg-uncertainty principle; by knowing that the photon exists, i.e. detecting 

its momentum, its location is unknown. For this reason, it is more convenient to consider 

the wave concept of light and not think in terms of photons. 
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 Young’s experiment, observations, and explanations have had a profound effect 

on how light is understood. There is much more to say about Young’s experiment, but 

here it suffices to explain his experimental setup and to state his conclusion that light 

indeed behaves as a wave. 

2.2. Wave Interference & Propagation 

 The simplest case of wave interference to consider is that of two monochromatic 

waves from point sources as is the case in Thomas Young’s double-slit experiment. 

Additionally, the waves are polarized in the same plane reducing the problem to two 

dimensions. The electromagnetic field waveform at a given point for the waves is 

described by  

 
 

 

1 1 1

2 2 2

e x p

e x p

E e i

E e i





 

 

  (2.1) 

where 
i

e  and 
i

  are the amplitudes and phases respectively [11]. The total intensity at 

this point of interest is 

 

   

2

1 2

2 2 * *

1 2 1 2 1 2

1
2

1 2 1 2 1 2
2 c o s .

I E E

E E E E E E

I I I I  

 

   

   

 (2.2) 

In equation (2.2) the 
1

I  and 
2

I  terms denote the intensity of each wave considered 

independently at the point of interest [9, 12]. The intensity I  is a function of the phase 

difference between the two waves, 
1 2

  , which is a function of the distance from the 

source and time [13]. In practicality, light is never truly monochromatic nor emitted 

from a point source, so the visibility of the interference is defined as [10] 
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 m a x m in

m a x m in

.
I I

I I






 (2.3) 

The maximum and minimum phase differences give the maximum and minimum total 

intensities respectively according to 

  
1 / 2

m ax 1 2 1 2
2I I I I I    (2.4) 

and 

  
1 / 2

m in 1 2 1 2
2 .I I I I I    (2.5) 

These two values, the maximum and minimum total intensity, refer to constructive and 

destructive interference, respectively as graphically shown in Fig. 2. The quality of 

interference in this example is unity. This means the constructive interference (a) results 

in double the amplitude of the contributing waves and the destructive interference (b) 

results in zero intensity. These wave interference concepts can be expanded to include 

multiple sources and even continuous (non-point) sources. For illustration, a field can be 

plotted showing the waveforms. 
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Fig. 2. Examples of (a) constructive interference and (b) destructive Interference. 

  

(a) (b)
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Fig. 3. (a) Wave propagation from two point sources (top left). (b) Interference pattern at the 

circular boundary in (a). The wave field is cropped at the top due to symmetry. 

  

 

 

 

 

 

 
Fig. 4. (a) Wave propagation from a continuous source (top left). (b) Interference pattern at the 

circular boundary in (a). 

X

(a)

Y

0 15 30 45 60 75 90

Angle from horizontal [deg]

(b)

In
te

n
s
it
y

X

(a)

Y

0 15 30 45 60 75 90

Angle from horizontal [deg]

(b)

In
te

n
s
it
y



10 

 

 Fig. 3a shows the wave field surrounding two point sources in the upper-left 

corner as is the case in Thomas Young’s double-slit experiment. Fig. 3b shows the time 

average of the interference intensity at the circular boundary in Fig. 3a as a function of 

the angular position relative to horizontal. Over the averaging time, some regions see no 

intensity of light, i.e. complete destructive interference. Other regions see large 

amplitudes from the constructive interference between the waves. Fig. 4a shows the 

wave field surrounding a continuous source in the upper-left corner. The continuous 

source is simply several discrete point sources adjacent to each other. The interference 

pattern is similar to that of the two point sources but has a decaying component.  

 If the radius of the viewing circle is sufficiently large and only the region of the 

viewing circle near the horizontal line in the center of the light sources is considered, the 

interference pattern assumes the shape of the Fourier transform of the source according 

to the Huygens-Fresnel Principle [13].  

2.2.1. 1-D Fourier transforms 

 The light source in Fig. 4a is a rectangle function over the y-coordinate of the 

plot. Explicitly the wave-source amplitude is 

  
2

2

1, 0

0 ,

L

L

yy
a y r e c t

yL

   
   

    

 (2.6) 

where L  is the length of the wave source [14]. The Fourier transform of the rectangle 

function [13] is  
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
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 (2.7) 

which is proportional to the s in c  function
1
. The form of these functions is shown 

graphically in Fig. 5. 

 
Fig. 5. (a) The rectangle function. (b) The sinc function. 

The magnitude of the s in c  function represents the interference pattern of a slit when 

viewed from far away from the source [13]. Compare the interference pattern in Fig. 4 

with Fig. 5. This concept can be generalized for any source even in two dimensions. 

                                                 
1

 Here the sinc  function is defined as    s in c s inx x x  ; however, some texts define it as 
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2.2.2. 2-D Fourier transforms  

 In the one dimensional case, the source could be represented in a functional form, 

and the interference pattern was represented by the Fourier transform. A two-

dimensional source can be transformed to a frequency domain in the same way [12]. A 

simple case to illustrate a 2d Fourier transform is a simple rectangular source 

  
1,  &  -

2 2 2 2,

0 , o th e rw ise .

a a b bx y
f x y

      
 



 (2.8) 

In general the two-dimensional Fourier transform has the form [15] 

    
 2

, ,
i u x v y

F u v f x y e d xd y


 
 

 

    (2.9) 

and the inverse 

    
 2

, , .
i u x v y

f x y F u v e d u d v


 


 

    (2.10) 

This standard form of the two-dimensional Fourier transform denotes the frequency 

domain as the UV plane and the Euclidian domain as the XY plane. Evaluating the case 

proposed in equation (2.8) gives the Fourier transform 
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 (2.11) 

The Fourier transform of the rectangle is a convolution of s in c  functions in the U and V 

directions with the periodicity scaled by the size of the rectangle.  
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Fig. 6. (a) Rectangular source. (b) Fourier transform magnitude of a rectangular source. 

 Fig. 6a shows the rectangle image from equation (2.8) with 2 0a   and 5b  . 

Fig. 6b shows the magnitude of the Fourier transform which includes the two s in c  

waveforms in equation (2.11). Note how the length scales in the source’s X  and Y  

directions are inverted in the Fourier transform’s U  and V  directions respectively. 

Essentially, the small vertical dimension of the rectangle leads to a long wavelength 

s in c  function and vice-versa for the horizontal rectangle dimension. 

2.3. Imaging and the Fourier Domain 

 It has been shown graphically in section 2.2 that the Fourier transform of a light 

source is similar to the interference pattern of the light waves emitted by the source. 

Here the relationship between a source-object’s Fourier transform and its interference 

pattern is derived. Just as the double-slit experiment revealed an interference pattern 

from two point sources on an observation plane, if optical apertures are placed on an 
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observation plane they can detect the interference pattern formed by the various point 

sources of light on a distant source. The interference pattern can then be inverse Fourier 

transformed to reveal the original source’s geometry. This derivation is based on the van 

Cittert-Zernike theorem [9, 16]. 

 
Fig. 7. Two optical apertures in an observation plane and the light source in the far-field plane. Both 

planes are parallel. 

 Shown in Fig. 7, there are light sources in the far-field plane located at 
i

x  and 

two apertures located in the observation plane at positions 
1

  and 
2

 . The electric field 

at 
1

  due to the source at 
i

x is 
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 (2.12) 
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where A  is the strength of the field, c  is the speed of light, 
1

R  is the distance from the 

source to aperture 1, and   is the average wavelength of light considered
2

. An 

analogous equation exists for aperture 2. The time average of the product of the field 

from the same source at the two apertures is 

 

   
*

1 1 2 1

1 2

1 2

1 1

1 2

, ,

2 2
e x p e x p

, , .

E x t E x t

R Ri i
t t

c cR R
A x t A x t

c c R R

 

 

      
        

          
     

   

 (2.13) 

Time can be shifted and terms rearranged such that  

      

1 2

* 2 1

1 1 2 1 1 1

1 2

e x p 2

, , , , .

R R
i

R R
E x t E x t A x t A x t

c R R




 
 

   
  

 

 (2.14) 

If the distance the light travels in the measurement time interval is much larger than the 

difference in the aperture distances from the source, that is  1 1 2i i
t t c R R


  , 

another simplification can be made to the amplitude terms such that 

        

1 2

*

1 1 2 1 1 1

1 2

e x p 2

, , , , .

R R
i

E x t E x t A x t A x t
R R




 
 
 

  (2.15) 

Recalling that the term    1 1
, ,A x t A x t  is the average intensity of the field, the 

intensity term  1
I x  can be introduced giving 

      

1 2

*

1 1 2 1 1

1 2

e x p 2

, , .

R R
i

E x t E x t I x
R R




 
 
 

  (2.16) 

                                                 
2
 The light entering the apertures is filtered to a narrow bandwidth. This is the quasi-monochromatic 

assumption. 
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Equation (2.16) is the coherence of the field from 
1

x  at apertures 1 and 2. The coherence 

of the field from all sources across the far-field plane S  is 

    

1 2

1 2

1 2

ex p 2

, .

S

R R
i

J I x d x
R R




 

 
 
 

   (2.17) 

Next, define the components of x  as x  and y  and the components of 
i

  as 
i

x  and 
i

y . 

The Fourier wave-number plane (UV plane) is defined where each unit is the number of 

wavelengths between the apertures. Formally, the UV plane has components 

 

1 2

1 2
.

x x
u

y y
v











 (2.18) 

When the observation plane is sufficiently far away from the source plane and higher 

order terms are neglected, it can be shown that 

 2 1
R R

u x v y



   (2.19) 

and the differential area d x  in equation (2.17) can be approximated as  

 
2

 R d x d y d x  (2.20) 

 giving the final simplification of the coherence as 

       , , ex p 2  .

S

J u v I x y i u x vy d x d y    (2.21) 

The coherence is the Fourier transform of the source as a function of the baseline of the 

two apertures and their angular orientation relative to each other. The baseline is the 
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distance between the two apertures, i.e. 
1 2

  . The coherence is typically plotted on a 

circular plot of the UV plane. 

 

 
Fig. 8. Graphical representation of the θ angular spatial plane which contains the image and the 

Fourier UV wave number plane. 

 Fig. 8 shows the 
X Y

  plane which is the far-field X Y  plane from Fig. 7 

represented in an angular view system. The angular resolution is defined as the 
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separate objects. The picture frame is the region in the image plane corresponding to the 

desired image, and it is again defined angularly as 
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 m n
J

 




  (2.22) 

in the Fourier UV plane. Analogously, the baseline of the apertures is proportional to the 

radial distance of the Fourier component in the UV plane, and the angle between the 

apertures determines the angle from a reference in the UV plane. Because the picture 

frame is finite, this neighborhood in the UV plane has finite size. By this argument the 

UV plane can be discretized to contain ‘coverage disks’ that represent unique 

measurements of the Fourier component at various spatial positions of the apertures.  

 The apertures can be repositioned repeatedly and multiple sets of apertures can 

be used to collect the Fourier components across the UV plane assuming the source does 

not change during the entire imaging process. Reconstruction of the image does not 

require the entire UV plane to be covered; however, complete coverage gives a better 

quality image. 

2.4. Intensity Correlation Interferometry 

 The intensity correlation interferometer is based on the Hanbury Brown and 

Twiss effect. In their 1957 paper [3], Hanbury Brown and Twiss discussed how the 

correlation magnitude of the wave field at two apertures is “the intensity fluctuation due 

to beats between waves of different frequency.” They embraced the wave nature of light 

which was still somewhat misunderstood due to some still holding photons as classical 

particles. They discussed the photon ‘bunching’ effect of light which is based on photon 

arrival times not being independent of each other. They stated that their results could be 

justified with Bose-Einstein statistics of photons; however, they stated that the same 

results were more easily understood through the classical wave nature of light. They 
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stated that these fluctuations in the intensity of light from a coherent source observed at 

two spatial locations are correlated.  The found that the cross-correlation of the intensity 

of the fluctuations recorded at these two locations is proportional to the square of the 

magnitude of the optical coherence at the two locations. A disadvantage of this method 

is that the narrow wavelength reduces the overall intensity of the light being measured. 

Having such a dim intensity of light to measure can introduce signal-to-noise ratio 

issues. More importantly, the proportionality constant multiplying the coherence 

magnitude is small, so long averaging times are needed to achieve a manageable the 

SNR for the coherence magnitude estimate. Additionally, the ICI system cannot provide 

the phase of the Fourier components. The phase must be recovered through 

computational algorithms which is the primary topic of this thesis. 

 

 
Fig. 9. Schematic of the Hanbury Brown and Twiss interferometer [2]. 
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Fig. 10. The Hanbury Brown-Twiss interferometer at the Narrabri observatory. Shown are the two 

light collectors with photodiodes located on the center mast. The two apertures are on a circular 

track allowing freedom of baseline and orientation. 
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 The interferometer designed by Hanbury Brown and Twiss is shown in Fig. 9 

and Fig. 10. The basic components are two apertures with sensors that measure the total 

intensity of the light entering the aperture. The signal from these two photocells is high-

pass filtered, delayed, correlated, and time averaged. The time averaged data is 

proportional to the square of the mutual coherence magnitude   for the baseline h  of 

the two apertures [17, 3] and is hence proportional to the square of the magnitude of the 

Fourier transform at the given baseline. The purpose of the high-pass filter is to remove 

the constant portion of the intensity measurement and only preserve the fluctuations in 

intensity. The normalized magnitude of the Fourier domain for the given baseline 
2

1 2
 , 

the object of interest , is proportional to the SNR of the intensity, 

 

 

2

2 1 2

1 2 2

1 2 1 2

I I

I I I I

 



 (2.23) 

 Because the signal-to-noise ratio can be quite low, the time average period in the 

mutual coherence determination is typically quite large to ensure convergence of the 

time averages. The long averaging period mandates a huge amount of data to be 

collected and processed. The ICI concept was not practical for many years due to these 

computational requirements; however, in recent years it has come of interest again 

because of increases in available computational power. 
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2.5. Applications to Astronomical Imaging 

 Astronomical imaging using interferometry usually takes two forms. Some 

applications, such as the work by Hanbury Brown and Twiss, pertain to precision 

measurement of the diameter of stars; however, they did not reproduce an image of the 

stars. They captured Fourier components until the large features of the star were evident, 

namely the overall circular shape of the star. Data from their measurements of Sirius are 

shown in Fig. 11. They captured the first oscillation of the jinc function resulting from 

the disk of the star. The rate of decay of the sinc function is proportional to the diameter 

of the star. Hanbury Brown and Twiss did not have the capability of measuring much 

more than the diameter of stars due to the nature of their equipment. Some more 

complex applications include measuring the separation between binary star systems. 

This application still doesn’t require an entire image to be reproduced, but the Fourier 

components would contain many more features than a simple star disk would give. 

  



23 

 

 
Fig. 11. Comparison between the values of the normalized correlation coefficient observed from 

Sirius and the theoretical values for a star of angular diameter 0.0063". The errors shown are the 

probable errors of the observations [2]. 
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 A more complex astronomical application of interferometry is starspot 

measurement and tracking. Starspots typically have a maximum diameter of 5% of the 

diameter of the star thus requiring resolution beyond any current optical system to 

resolve. Because of the complexity and interest in this application, a simplistic analysis 

will be given where the position and intensity of the starspots is measured. This example 

is adapted from the work contained in [18]. 

 The scene of a star with radius r  and N  starspots can be given as 

    

2 2

0

1

, c irc , .

N

k k k

k

x y
s x y x x y y

r
  



 
    
 
 

  (2.24) 

The first term is the disk of the star, the second term is a Dirac delta function 

approximation for each starspot, and the intensity of each feature is given by 
k

 . Note 

that the starspot   values will be negative. The delta function is appropriate to represent 

the starspots because the spots are assumed to be unresolvable by the apertures of the 

interferometer. The Fourier transform of the source is thus 

  
 

 

2 2

1

0
2 2

1

2

, e x p 2 .

N

k k k

k

J r u v

S u v r i x u y v

u v



  





     


  (2.25) 

The mutual coherence square magnitude is 
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 (2.26) 

The four terms in equation (2.26) have specific meanings. The first term is the 

interference due to the stellar disk. The second term is the interference between the 

stellar disk and the starspots. It contains the spot positions relative to the stellar disk in 

k k
x u y v . The tertiary term refers to the effect of the starspots on the scene, namely the 

dimming effect that each spot has on the overall scene. The fourth term refers to the 

interference between each of the spots and contains the spots positions relative to each 

other. 

 As an example, a case is considered with four starspots. The scene is normalized 

such that 
0

1r   . This gives the star a total brightness of  . To represent a nominal 

starspot, the intensity is about 0.1% of the star brightness so 0 .0 0 1 0 .0 0 3
k

   . The 

scene is displayed graphically but not to scale in Fig. 12.  

 Plotting the mutual coherence square magnitude and each of the four contributing 

terms as a function of the radial Fourier coordinate gives insight into the advantage of 

using intensity correlation interferometry for such an imaging task. 
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Fig. 12. Pictorial of the sample scene of a star with four starspots (not drawn to scale). 
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Fig. 13. Mutual coherence square magnitude and its contributing terms near the Fourier origin. 

Only the stellar disk term is significant. 
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Fig. 14. Mutual coherence square magnitude and its contributing terms away from the Fourier 

origin. 
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 Fig. 13 shows that for small radial Fourier coordinates the mutual coherence 

square magnitude is dominated by the stellar disk. The trend follows one very similar to 

the stellar diameter measurements done by Hanbury Brown and Twiss shown in Fig. 11. 

Fig. 14 shows that at larger radial Fourier coordinates the other terms begin to dominate. 

This implies that to gain knowledge of the position of the starspots and their intensities 

using an ICI for a star similar to our sun baselines must be approximately greater than 

   3 1 5O r O e   meters, which would be impractical for a single aperture telescope. 

Additionally, measurements would need to be taken at intervals smaller than 

   0 .2 5 1 4O r O e   meters to capture the waveform. The number of measurements 

required to resolve information about the starspots would thus be very high. This 

example shows one of the primary complexities with high resolution imaging with 

intensity correlation interferometry; however, this insight highlights the potential of the 

intensity correlation interferometer when applied to astronomical imaging.  
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3. PHASE RETRIEVAL 

 Most interferometry systems correlate the electromagnetic field from two spatial 

locations to obtain the magnitude of the Fourier transform of the light source; however, 

some systems do not provide information about the phase of the complex Fourier 

transform values, such as the ICI. Phase retrieval is applicable to stellar interferometry as 

is discussed here. Additionally, two application of phase retrieval to small scale imaging 

are X-ray crystallography and high-resolution transmission electron microscopy. X-ray 

crystallography aims to map the structure of a crystal. The density of electrons is 

measured revealing the overall structure of the crystal and allowing inference about the 

molecular bonds present [19]. High-resolution transmission electron microscopy 

(HRTEM) is another method of observing a crystal structure at the atomic length scale. 

As a standard interferometer observes a light field, the HRTEM observes an electron 

field which is passed through a thin specimen. The atoms within the specimen 

essentially comprise the image of interest [20]. Phase retrieval is important in these 

fields because the entire UV plane is used to recreate an image. This is unlike most 

current astronomical interferometry applications which do not use the entire UV plane 

and do not aim to recreate an entire image. 

 There are several methods for recovering the phase information as outlined in 

[21] and [22]. The primary difficulty in recovering the phase that each method addresses 

is the large number of degrees of freedom. Every pixel in an image is a degree of 
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freedom, and for this reason the solutions are usually computationally intensive and rely 

on iterating to converge to a solution. 

3.1. Exact Phase Solution 

 To formulate an exact solution to the phase retrieval problem, one can consider 

each square pixel in an N N  image to be a separate rectangle with some intensity 

value. This approach will lead to a convolution of the Fourier domain solution presented 

in section 2.2.2 for each square pixel. Convolution is possible due to the linearity of the 

Fourier transform, i.e. each feature in an image can be transformed separately and the 

results convoluted. Let the magnitude of each pixel across the  ,u v  plane be  ,A u v . 

The convolution is thus [22] 

 

    
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 (3.1) 

Expressing the phase in trigonometric form and squaring both sides gives the non-linear 

system of equations 
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 (3.2) 

This system of equations has 
2

N  unknowns and 
2

N  solution sets. To constrain the 

system, any pixel can be constrained, i.e.  1,1 0  , and a unique solution will exist. By 

constraining pixel  1,1 , equation (3.2) becomes 



32 

 

 

 

        

     

        

2

*

1 1

2

2

*

1 1

,

, s in c s in c c o s ,

1,1 s in c 1 s in c 1

, s in c s in c s in , .

N N

k m

N N

k m

A u v

A k m u k v m k m

A u v

A k m u k v m k m





 

 




 




  


 
  
 
 

 

 

 (3.3) 

The notation *
   means skip the summation when 1k   and 1m   because this is the 

constrained pixel. It is possible to solve this system, but the solution can be difficult to 

obtain due to many local minima and the large number of equations. It is thus more 

convenient to seek a more creative algorithm. 

 Before continuing, the non-uniqueness of the solution is an important caveat to 

discuss. There are three effects that the ambiguity in the solution has on the image. Two 

of these effects are considered to be trivial—translation and rotation. The pixels in the 

image can be translated vertically and horizontally similar to a mapping onto a torus. 

Pixels will jump from one side of the image to the opposing side if they move out of the 

image domain. The rotational ambiguity refers to a 180 degree rotation of the image. 

Both of these ambiguities can be fixed by simply translating or rotating the image. The 

third ambiguity, which is far less common, is attributed to the Fundamental Theorem of 

Algebra not existing in this 2d case. That is, the multivariable equation (3.3) can be 

factored in more than one way, thus non-unique solutions exist. 
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3.2. Error-Reduction Method 

 A relatively simple iterative method of phase retrieval is the Gerchberg-Saxton 

algorithm adapted to phase retrieval by Fienup which is commonly referred to as the 

error-reduction method [23, 24]. The algorithm uses constraints on the image domain 

and Fourier domain to iteratively handle the large number of degrees of freedom. The 

algorithm has four basic steps starting with an initial guess of the image: (1) the image is 

Fourier transformed to the Fourier domain; (2) constraints are imposed on the Fourier 

domain; (3) the result is inverse Fourier transformed to give an estimate of the image; (4) 

constraints are imposed on the image. The process is repeated until the true image is 

revealed. The process is shown as a block diagram in Fig. 15. This algorithm is 

favorable because each pixel is not solved via a system of equations. Instead, projections 

subject to constraints are made to the data until the convergence conditions are met. 
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Fig. 15. Block diagram of the error-reduction approach [21]. The loop is continued until the 

constraint violations are sufficiently low, and the process terminates giving an estimate of the image. 

 The constraints on the Fourier transform are in the form of the known magnitude 

values from the interferometer measurements:  

   ' ex p arg .
k m ea su red k

G G i G  (3.4) 

The constraints on the image are typically based on the following: the size of the object 

in the image is known approximately, the image has a blank background, and the pixel 

values must be real-valued. The background constraints are placed on the image at each 

iteration k  such that 
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where   is the region assumed to be the background of the image [23]. This is the form 

of the image constraint for the standard error-reduction method. The hybrid error-
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reduction algorithm has a slightly different form for the constraints to expedite 

convergence. A gradient step is taken when imposing the constraints such that 

  
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 (3.6) 

The second line of equation (3.6) mimics the concept of negative feedback. This method 

tends to converge more quickly and tolerates noise better than the standard error-

reduction algorithm. 

 Since this algorithm is iterative, it is convenient to quantify the convergence in 

terms of the mean-squared error. The error is defined by the sum of the squared 

constraint violations, i.e. 
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 
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This error does not directly consider the difference between the true image’s foreground 

and the estimated foreground. That is, the error does not actually quantify the appearance 

of the image as perceived by a person. Indirectly, errors in the foreground are considered 

in this definition due to the nature of this problem. The phase of a single pixel in the UV 

plane determines the phase of a sinusoid superimposed on the image at a given 

frequency. If there is an error in the phase of a UV pixel, the sinusoid related to that UV 

pixel will not be destructively interfered with by other UV pixel’s sinusoids in the 

background. Simply stated, this definition of the error does capture errors in the 

foreground even though it only explicitly sums the pixels in the background of the 

image. 
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 Fienup shows that the mean-squared error in the input-output algorithm (not 

necessarily the hybrid input-output algorithm) can only decrease which gives the 

algorithm its name, ‘error-reduction’ [23]. He defines the Fourier domain error, 
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 (3.8) 

by using Parseval’s theorem. Similarly, the image domain error in equation (3.7) can the 

transformed to give  
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 (3.9) 

Because of the imposition of the image constraints in 2

0 , k
E  and the subsequent imposition 

of Fourier constraints in 2

, 1F k
E


, it holds that  

        1 1 1
, ' , , ' , .

k k k k
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  
    (3.10) 

which gives 
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Expanding this expression to include an additional iteration gives 

 2 2 2 2

0 , 1 , 1 0 , ,k F k k F k
E E E E

 
    (3.12) 

which shows that both the image and Fourier domain error cannot increase at each 

iteration. 
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 The discussions here-on do not use the standard error-reduction algorithm. 

Rather, the hybrid error-reduction algorithm is used. The standard algorithm has a proof 

that the error is monotonically decreasing; however, in practice the solution can assume 

local minima and take extremely long to converge. The hybrid error-reduction algorithm 

has no proof of convergence, but in practice shows better convergence behavior. 

 As an example of the hybrid error-reduction algorithm, the image of Saturn is 

considered. The true image and the estimated image from the hybrid error-reduction 

algorithm are shown in Fig. 16. Fig. 17 shows the results at various iterations. The red 

box indicates the boundary of the domain   which corresponds the purely background 

region. Note that outside the boundary the background is nearly all black, but some 

artifacts
3
 exist around the planet at some iterations. Furthermore, the planet is translated 

from its original position in the image frame. This is the result of the non-unique nature 

of the phase solution. The various phase solutions correspond to translation and rotation 

of the image. Fig. 18 shows the RMS error at each iteration. Notice that the error only 

decreases at each iteration. 

                                                 
3
 Artifact is a commonly used term in imaging and digital graphics that refers to any undesired 

abnormality. Its exact definition is quite vague. 



38 

 

 
Fig. 16. (a) The test image of Saturn and (b) the results of the hybrid error-reduction algorithm. 

(a) True Image (b) Estimated Image
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Fig. 17. Reconstructed image of Saturn at various iteration steps using the error-reduction phase 

retrieval. 

(a) Iteration 1 (b) Iteration 50

(c) Iteration 100 (d) Iteration 250

(e) Iteration 500 (f) Iteration 2000
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Fig. 18. RMS error at each iteration for the hybrid error-reduction algorithm used on the image of 

Saturn. 

 In general there is no unique solution for the phases; however, there are many 

solution sets which will provide a satisfactory image (discussed in section 3.1). The 

difficulty in using the error-reduction method is determining the exact constraint   to 

impose on the image. This is the primary topic of discussion in section 4.1. 
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4. PHASE RETRIEVAL ALGORITHMS 

 In this section, algorithms for estimating the phase of a two-dimensional Fourier 

transformed image are discussed in detail. The astronomical imaging application is 

considered in which the image has a black background around the foreground object of 

interest.  

 The formal problem statement is the following. The magnitude of the 2d Fourier 

transform of an unknown image is known but noisy, and the phase is unknown. The 

background of the image is known to be black, but the exact size of the foreground 

object is unknown. The phase must be estimated and combined with the known 

magnitude. Then the result is to be inverse Fourier transformed to reveal an estimate of 

the unknown image. 

 The phase retrieval algorithm presented here is based on the hybrid error-

reduction algorithm as presented by Fienup in [23]. As discussed in section 3.2, the 

algorithm has four steps which are repeated. Initially, a guess of the image is formed. 

Next, the image is Fourier transformed. Constraints are imposed on the Fourier 

transform. The result is inverse Fourier transformed, and finally constraints are imposed 

on the image. After many iterations, the number of corrections required to impose the 

constraints decreases, and the resulting image resembles the true image. The primary 

difficulty in this method is knowing what the constraints should be. The constraint on the 

Fourier modulus is the given ‘data.’ The obvious constraint on the image is the pixel 

values must be real and within a specified range, i.e. positive. The difficult constraint to 
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impose is the background region, because the size of the foreground is unknown. A 

secondary difficulty is forming the initial guess of the image. Both of these tasks are 

further complicated when noise is introduced into the Fourier modulus data. 

4.1. The Collapsing Foreground Algorithm 

 The following are proposed as suitable solutions to determinging the background 

region in the phase retrieval problem without a priori knowledge of the size of the 

foreground. The foreground is initially assumed to be almost as big as the entire image. 

After the first few iterations and at each subsequent iteration, the pixels next to the 

background boundaries, called the ‘check region’, are inspected. If most of the pixels in 

the check region have a low value, the background boundary is moved inward slightly. If 

the check region contains too many pixels above a specified intensity, the background 

boundary will move outwards to prevent cutting off part of the foreground. This concept 

is shown in Fig. 19. The dashed line is the background boundary, and everything outside 

the boundary is constrained to be background. The light-gray region just inside the 

background boundary is the check region. As shown, the top edge of the background 

border is close to the image, so it will not move inward. The other three background 

borders are not close to the star so at each iteration they will move inward until their 

respective check regions touch the star. The moving background border gives the name 

of the algorithm: the collapsing foreground algorithm. This method essentially finds the 

foreground within the image. In practice, during the iterations the image is not a clear 

shape. It is rather many seemingly random patches of pixels as the image develops 

during the iterations. 
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Fig. 19. Schematic of background boundary and check region. 

 It should be noted that the analysis of the RMS error given in section 3.2 does not 

entirely hold for this algorithm. The error is not always decreasing, because the 

argument that supports expression (3.10) does not hold if the background boundaries 

move inwards. Typically a sharp increase in the RMS error is seen when the background 

borders move inward; however, between movements the error is still monotonically 

decreasing. 

 Further detail in the form of a pseudo-code of this algorithm combined with the 

error-reduction algorithm is given in Algorithm 1 and Algorithm 2 in APPENDIX A. 
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4.2. Relaxed Constraints 

 When noise is introduced into the Fourier modulus data, the correct phase 

solution will include artifacts in the background of the image. The hybrid error-reduction 

allows for non-zero pixels in the background, effectively relaxing the background 

constraint. Because the true solution includes non-zero pixels in the background, forcing 

these pixels to be zero will drive the estimate away from the true phase solution. 

Likewise, the Fourier modulus data contains noise, so the true image cannot be obtained 

if it is rigidly constrained.  

 The Fourier modulus constraint can be relaxed by allowing it to drift over time. 

The constrained value, 'G , for the Fourier modulus can be defined according to  

        ' , , 1 ,
k k m ea su red

G u v G u v G u v     (4.1) 

Notice that the constrained Fourier modulus is comprised of the Fourier data before the 

constraints are imposed on the current iteration, 
k

G , and the initial modulus data, 

m ea su red
G . Each of these components is important. The 

k
G  term brings the image domain 

constraint’s effect into the Fourier modulus; this is essentially where the noise 

cancelation comes from. The initial modulus term ensures stability and prevents the 

modulus value from running away. If the parameter   is zero, the constraint is exactly 

in the error-reduction method’s form. 

4.3. Initial Condition and Image Averaging for Noisy Data 

 The initial condition has an effect on the final image. Fig. 20 shows how various 

initial conditions give different artifacts in the final images. It is thus proposed that for 

the initial guess the edges of the initial image are assumed to be background. This region 
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may be about ten percent of the total pixels in the image. The rest of the initial image 

contains random pixel values. Here the pixel values have a uniform probability 

distribution from zero to one.  

 
Fig. 20. Image estimates after 500 iterations (not fully converged) with four different initial 

conditions. 

(a) (b)

(c) (d)
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 After using the random initial image in the error-reduction method, an estimate 

of the true image will be obtained. The image will contain many artifacts due to the 

noise in the Fourier modulus data and error caused by some of the initial images be poor 

choices. As shown in Fig. 20a, some initial conditions work well; however, the other 

three have much more distortion in the image and will require more iterations to correct 

the distortion. The artifacts can be nullified by generating several image estimates using 

different initial images. The resulting images can be averaged together to yield an image 

with less obvious artifacts. 

 To combine multiple image estimates, they must each be translated such that the 

foregrounds all line up. This can be done by finding the center of mass of the image 

matrix and circularly shifting the rows and columns of the matrix. The center of mass is 

found using 
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and 
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The rows and columns are then shifted until the center of mass is in the middle of the 

matrix. The separate image estimates are then averaged. 
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5. PERFORMANCE & RESULTS 

 The following sections show the performance of the collapsing foreground 

algorithm, the relaxed constraint algorithm, and the image averaging algorithm. The 

same images of Saturn and of a fictitious star with star-spots are considered. It should be 

noted that there exists an ambiguity in the phase solutions that results in a 180 degree 

rotation of the images in some results. The images in the following results are rotated to 

correct for this ambiguity when necessary. 

5.1. Collapsing Foreground Algorithm with Noiseless Data 

 The collapsing foreground algorithm presented in section 4.1 proves to have 

performance comparable to the hybrid error-reduction method even considering the size 

of the foreground is unknown. The image of Saturn is used to compare the error-

reduction method to the collapsing foreground algorithm. Fig. 21 is a comparison 

between the true image and the reproduced image with much of the background cropped. 

The close-up reveals some artifacts around the planet in the background. Most of the 

detail in the form of thin lines along the rings are preserved. The image estimate at 

various iteration steps is shown in Fig. 22. The foreground collapsed to the similar size 

as that used in the error-reduction method example. The RMS error shown in Fig. 23 

reveals that the errors are comparable. Typically the collapsing foreground algorithm 

seems to show a quicker decrease in the RMS error. The collapsing foreground 

algorithm, however, has upward trends in the error value that are not present in the error-

reduction method. These upward trends typically occur when the foreground is collapsed 
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because additional pixels are added to the background regions. The effect of the collapse 

on the error is understood by referring back to the definition of the RMS error given in 

equation (3.7).  

 
Fig. 21. Close-up comparison of true image of Saturn and the results of the collapsing foreground 

algorithm. Both the hybrid error-reduction and collapsing foreground algorithms were given the 

same initial guess and same number of iterations. 

 

(a) True Image (b) Estimated Image

Hybrid Error-Reduction

(c) Estimated Image

Collapsing Foreground
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Fig. 22. Reconstructed image of Saturn at various iteration steps using the collapsing foreground 

algorithm. 

(a) Iteration 1 (b) Iteration 50

(c) Iteration 100 (d) Iteration 250

(e) Iteration 500 (f) Iteration 2000
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Fig. 23. Comparison between the RMS error for the collapsing foreground and error-reduction 

algorithms for the image of Saturn. 
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 Shown in Fig. 24 is an image of a star with star-spots used for additional 

evaluation of the collapsing foreground algorithm. Fig. 25 and Fig. 26 show the same 

algorithm as shown for the image of Saturn but for an image of a star with star-spots. 

The results are comparable to that of the Saturn image, and the star-spots are 

recognizable. The intensity and size, however, is slightly incorrect for some of the spots. 

Additional iterations can be performed to gain more detail of the star-spots. 

 

 
Fig. 24. Original image of a star with star-spots. 
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Fig. 25. Reconstructed image of a star with star-spots at various iteration steps using the collapsing 

foreground algorithm. 

(a) Iteration 1 (b) Iteration 50

(c) Iteration 100 (d) Iteration 200

(e) Iteration 500 (f) Iteration 1000
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Fig. 26. Close-up comparison of (a) the true image of a star with star-spots and (b) the results of the 

collapsing foreground algorithm. 

5.2. Collapsing Foreground Algorithm with Noisy Data 

 To test the collapsing foreground algorithm with noisy data the image of Saturn 

is again considered. The modulus data has additive Gaussian noise such that the SNR is 

defined as 

 
 

 

G
S N R

N




  (5.1) 

which is the ratio of the mean of the Fourier modulus values G  to the standard 

deviation of the additive noise N . Fig. 27 shows (a) the original image of Saturn and (b 

and c) the image after the Fourier modulus has been corrupted with the additive 

Gaussian noise according to 

        , , , , .
M ea su red M ea su red T ru e

G u v G u v G u v N o       (5.2) 

 Fig. 28 shows the estimated image at several iteration steps. Note that there are some 

pixels with non-zero values in the background region at earlier iterations. This is because 

(a) True Image (b) Estimated Image
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the   value in equation (3.6) has a small value of 0.01. The small   helps the 

algorithm converge in the presence of noise by allowing pixel values in the background 

to be non-zero but non-increasing at each iteration. Fig. 29 shows the final image 

estimates after 1000 iterations. For these high levels of noise, the details of image are 

virtually lost; however, even at the high SNR of 0.42 the overall size of the planet is 

preserved. This result implies that the typical use of ICI, measuring sizes of celestial 

objects, is still practical. Fig. 30 shows the RMS error at each iteration for the three SNR 

levels. The upward trend in the noisy images is the result of the background boundaries 

moving inward. As might be expected, the SNR is inversely proportional to the final 

RMS error. 

 
Fig. 27. Images corresponding to the noisy Fourier modulus and the true phase. Shown in (a) is the 

true image with no noise added. Depicted in (b) and (c) are the images corresponding to the 

corrupted Fourier modulus data and the true phase data. The SNR for (b) and (c) are 0.48 and 0.24 

respectively. Some of the background is cropped. 

  

 

(a) SNR: Inf (b) SNR: 0.48 (c) SNR: 0.24
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Fig. 28. The image of Saturn reproduced from noisy modulus data at various iterations. (a,d, and g) 

have no additive noise. (b,e, and h) have an SNR of 0.48. (c,f, and i) have an SNR of 0.24. 

(a) Iteration: 50 SNR: Inf (b) Iteration: 50 SNR: 0.48 (c) Iteration: 50 SNR: 0.24

(d) Iteration: 250 SNR: Inf (e) Iteration: 250 SNR: 0.48 (f) Iteration: 250 SNR: 0.24

(g) Iteration: 1000 SNR: Inf (h) Iteration: 1000 SNR: 0.48 (i) Iteration: 1000 SNR: 0.24
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Fig. 29. Final image estimates after 1000 iterations for three levels of additive Fourier modulus 

noise. Some of the background is cropped. 

  

(a) SNR: Inf (b) SNR: 0.48 (c) SNR: 0.24
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Fig. 30. RMS error at each iteration for the collapsing foreground algorithm used on noisy image of 

Saturn. 
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5.3. Relaxed Constraints 

 The relaxed constraint algorithm aims to remove some of the noise in the UV 

modulus constraint. Typically the SNR can be increased between 15% and 30%. 

Unfortunately, although the SNR is increased the image foreground typically doesn’t 

change much through the relaxation process. The primary effect is a reduction in the 

background artifacts. The hybrid input-output allows pixels in the background to be non-

zero which improves the foreground, but this can decrease the contrast between 

foreground and background. Fig. 31 shows a comparison of the background intensity 

before and after the constraint is relaxed. The effect is approximately a 50% reduction in 

the pixel values across the background with virtually no change to the foreground. The 

exact amount of error reduction is greatly dependent on the image, noise, relaxation 

parameter values, and the estimation algorithm. The amount of error reduction is also 

typically inversely-proportional to the parameter in the hybrid input-output algorithm.   

 The effect of relaxing the UV constraint on the error is shown in Fig. 32. The 

constraint was relaxed at iteration 1000. Notice a sharp drop in the background 

constraint error and the drop in the UV magnitude constraint error. After the constraint is 

relaxed and the UV error decreases, often an oscillation will be scene between the 

background and UV constraints. One error will increase slightly and the other will 

decrease repeatedly. Typically the range of oscillation is much less than the overall error 

reduction; however, at very high noise levels the oscillation can be substantial. 
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Fig. 31. Comparison of the background pixel intensities before and after the UV constraint it 

relaxed. 

 

 

 

  

(a) Prior to constraint relaxation (b) After constraint relaxation 



60 

 

 
Fig. 32. The effect of relaxing the UV constraint on the UV magnitude error and the background 

constraint error. The UV magnitude constraint was relaxed at iteration 1000.  
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5.4. Image Averaging 

 The image averaging algorithm can be used to cancel out some artifacts that arise 

as the result of noise in the Fourier modulus data. To demonstrate this algorithm, 

estimates of the image of Saturn and the star with star-spots, like those shown in the 

previous section, are used. Twenty image estimates are formed using the collapsing 

foreground algorithm. Each is circularly shifted and then averaged together. The initial 

conditions for each estimate are independent, uniformly distributed random images. 

 For the image of Saturn, the Fourier modulus SNRs considered are the same as 

those used for the collapsing foreground algorithm examples: 0.48 and 0.24. Examples 

of the individual image estimates are shown in Fig. 33. The resulting averages of twenty 

of these estimates are shown in Fig. 34 and Fig. 35. The results show fewer artifacts in 

the disk of the planet. Also, the magnitude of the pixel values is closer to that of the true 

image; the colors are similar around the disk of the planet. These corrections to the 

image come at the expense of a blurring of the edges of the planet. In most cases this 

blurriness can be somewhat corrected through standard image sharpening techniques. 

 The image of the star with star-spots is more difficult to estimate because the 

small details, the spots, are of interest. As examples, the Fourier modulus data has an 

SNR of 1.5 and 0.75 in these two examples. The resulting images are shown in Fig. 36 

and Fig. 37. The high SNR result shows that the outline of the star is very clear. The 

spots, however, are present but not very clear. Their positions are evident, but the size of 

the spots is difficult to measure. The low it shows less definition around the edge of the 

star and the spots are difficult to recognize. 
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Fig. 33. The first of the twenty image estimates used in the image averaging examples. 

  

(b) SNR: 0.24(a) SNR: 0.48
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Fig. 34. The result of the image averaging algorithm using twenty image estimates with a Fourier 

modulus SNR of 0.48. 
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Fig. 35. The result of the image averaging algorithm using twenty image estimates with a Fourier 

modulus SNR of 0.24. 
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Fig. 36. The estimate of the image of a star using the image averaging algorithm using twenty image 

estimates with a Fourier modulus SNR of 1.5. 
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Fig. 37. The estimate of the image of a star using the image averaging algorithm using twenty image 

estimates with a Fourier modulus SNR of 0.75. 
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5.5. Performance Improvements 

 Most of the examples shown in this thesis were produced in a manner of minutes 

on a typical PC using Matlab. Utilizing a compiled language can increase the iteration 

speed of these algorithms. For the sake of comparison, these algorithms were 

implemented in a Windows forms application written in C#. This program includes a 

complete graphical user interface for managing the creating of the image estimates. The 

interface is shown in APPENDIX B. Through careful memory management and 

parallelization of the algorithms, multiple collapsing foreground trials can be run 

simultaneously an easily combined through the image averaging technique. 

 The crux of such a program’s performance is the Fourier transform algorithm 

used. The best benchmarked FFT algorithm is the FFTW subroutine. It is a subroutine 

library written in C, which can be ported to C++ and C#, that out performs most other 

standard FFT methods in every case. It attains its efficiency by trying several different 

FFT methods ahead of time and checks which gives the fastest results for the problem 

being considered. The ‘plan’ is then utilized repeatedly through the iterations of the 

phase retrieval program. 

 To compare the performance of the C# program with that of the same algorithm 

in Matlab, the image of Saturn was run for 1000 iterations and is 256 by 256 pixels. The 

C# program performs approximately 120 iterations per second. In Matlab 45 iteration 

per second is typical. Additionally, when running multiple trials simultaneously, as is 

desired for using the image averaging algorithm, the C# program provides far superior 
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results. Although Matlab supports running several routines in parallel using the parallel 

computing toolbox, the iterations are by far slower. 

 While Matlab is the tool of choice for developing such algorithms, it is well 

known that it does not provide quick performance. These results give the notion that the 

practicality of these iterative algorithms can be greatly increased by paying further 

attention to the implementation of the algorithm. 

  



69 

 

6. CONCLUSIONS 

 This thesis proposed three adaptations of Fienup’s phase retrieval algorithm that 

make phase retrieval of images feasible for Intensity Correlation Interferometry 

applications. The primary consideration was eliminating the need for knowledge of the 

size of the foreground of the image before attempting phase retrieval. It was shown that 

proper phase retrieval is possible with this information completely unknown by using the 

collapsing foreground algorithm. This algorithms performance was shown on ideal data 

and noisy data. The algorithm proved capable of providing a comprehendible image 

given Fourier modulus data contained additive, element-wise Gaussian noise with an 

SNR as low as 0.24. The addition of constraint relaxation also allowed for added 

compensation of noise. It should be noted, however, that the SNR metric is somewhat 

dependent on the content of the image.  

 Another consideration in this thesis was the issue of choosing an initial condition 

for the solver. It was shown that the initial condition affects the artifacts in the final 

image estimate. This led to the proposal of the image averaging algorithm where several 

estimates of the image are formed with various random initial conditions. The results 

were them averaged together to eliminate many of the artifacts unique to the initial 

condition for the trial. This algorithm also showed an improvement in eliminating some 

of the artifacts introduced by the Fourier modulus noise. 

 In the past the algorithms presented here would not have been feasible due to 

their computational expense; however, with advances in computational power and fast 
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Fourier transform algorithm efficiency the past few years, the computational cost in 

these algorithms is manageable. With additional attention paid to programming 

efficiency, parallelization, and compilation, the solution times can possibly be reduced to 

just several seconds. 

 Because intensity correlation interferometers suffer from very low SNR levels, 

an improvement to these algorithms may lie in the constraint relaxation algorithm. Since 

the noise in the Fourier modulus data will distort the image and cause artifacts in the 

background, both non-zero pixels in the background region and deviation from the given 

Fourier modulus data should be allowed. Relaxation of the constraints may help allow 

for higher tolerance of noise in the modulus data. 
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APPENDIX A 

PHASE RETRIEVAL PSEUDO-CODES 

 The following are the pseudo-codes for the phase retrieval algorithms discussed 

in section 4. They contain some of the typical function names used in Matlab. 

Algorithm 1. Standard Error-Reduction Algorithm with Collapsing Foreground 

Input: The measured Fourier transform magnitudes stored in, fourier_modulus. 

Output: The estimated image, g_out. 

 

g_in = random matrix    //Create the initial guess of the image 

while rms_error < some convergence criteria 

 // Step 1 – Fourier Transform 

 G = fft(g_in) 

  

 // Step 2 – Impose Fourier Constraints 

 G = fourier_modulus * angle(G) 

  

 // Step 3 – Inverse Fourier Transform 

 g_out = ifft(G) 

  

 // Step 4 – Impose image constraints 

 foreach (x,y) 

  if g_out(x,y) > 1 

   g_out(x,y) = 1 

  if g_out(x,y) < 0 

   g_out(x,y) = 0 

  if (x,y) is in the background region 

   g_out(x,y) = 0 

  

 //Quantify error 

 rms_error = sum( (g_out – g_in).^2 ) 

  

 //Move background boundaries inward 

 if each g_out(x,y) in check region <  threshold 

  Move background boundary inward 

return g_out 

  



75 

 

Algorithm 2. Hybrid Error-Reduction Algorithm with Collapsing Foreground 

Input: The measured Fourier transform magnitudes stored in, fourier_modulus. 

Output: The estimated image, g_out. 

 

g_in = random matrix    //Create the initial guess of the image 

while rms_error < some convergence criteria 

 // Step 1 – Fourier Transform 

 G = fft(g_in) 

 

 // Step 2 – Impose Fourier Constraints 

 G = fourier_modulus * angle(G) 

 

 // Step 3 – Inverse Fourier Transform 

 g_out = ifft(G) 

 

 // Step 4 – Impose image constraints 

 foreach (x,y) 

  if g_out(x,y) > 1 

   g_out(x,y) = 1 

  if g_out(x,y) < 0 

   g_out(x,y) = 0 

  if (x,y) is in the background region 

   g_out(x,y) = g_in(x,y) – beta * g_out(x,y) 

 

 //Quantify error 

 rms_error = sum( (g_out – g_in)^2 ) 

 

 //Move background boundaries inward 

 if each g_out(x,y) in check region <  threshold 

  Move background boundary inward 

return g_out 
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Algorithm 3. Image Averaging Algorithm 

Input: Estimated images from the collapsing foreground image, g[i]. 

Output: The estimated image, g_out. 

 

foreach g[i] 

 //Step 1 – Find the center of mass of the image matrix 

 for x=1..Nx 

  cmY += sum(g[i][x,:] .* [1,2,3,..,Ny]) / sum(sum(g[i])) 

 for y=1..Ny 

  cmX += sum(g[i][:,y] .* [1,2,3,..,Nx]) / sum(sum(g[i])) 

 

 g[i] = circshift(g[i],-[cmX-Nx/2 cmY-Ny/2]) 

 

g_out = mean(g) 

 

return g_out 
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APPENDIX B 

THE PHASE RETRIEVER SOFTWARE 

 The following are screenshots from the software written to implement the 

algorithms introduced in this thesis. The program is titled ‘The Phase Retriever.’ It is 

written in C# to implement many tools and interfaces available through the windows 

.Net framework. This allowed for minimal time to be spent programming the interface 

and allowed more effort to be focused on the inner workings and optimization of the 

solver. 

 
Fig. 38. The general Phase Retriever Interface. Shown are the input image and its properties. 
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Fig. 39. Interface for loading images to create Fourier modulus data to import to the solver. 

 

 

 
Fig. 40. Interface for running the FFT of the input image and adding noise to the modulus data. 
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Fig. 41. Interface for running trials in the estimator. Includes tools for modifying the background 

region and editing the current iteration’s image. 

 

 

 
Fig. 42. Interface for performing image averaging. Buttons are included for translating and rotating 

the images from each trial. 
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Fig. 43. Variable editor for viewing all working variables in each trial. This is useful for debugging 

and troubleshooting. 


