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ABSTRACT 

 

Equilibrium and Stability of Rectangular Liquid-Filled Vessels. 
(April 2010) 

 
Russell Trahan III 

Department of Aerospace Engineering 
Texas A&M University 

 
 

Research Advisor: Tamás Kalmár-Nagy 
Department of Aerospace Engineering 

 
 

Here we focus on the stability characteristics of a rectangular liquid-filled vessel. The 

position vector of the center of gravity of the liquid volume is derived and used to 

express the equilibrium angles of the vessel. Analysis of the potential function 

determines the stability of these equilibria, and bifurcation diagrams are constructed to 

demonstrate the co-existence of several equilibrium configurations of the vessel. To 

validate the results, a vessel of rectangular cross-section was built. The results of the 

experiments agree well with the theoretical predictions. 

  



iv 
 

ACKNOWLEDGEMENTS 

 

Valuable discussions on the topic with Gabor Stépán and financial support by the US Air 

Force Office of Scientific Research (Grant No. AFOSR-06-0787) are gratefully 

acknowledged. 

  



v 
 

TABLE OF CONTENTS 

Page 

ABSTRACT ..................................................................................................................... iii 

ACKNOWLEDGEMENTS ..............................................................................................iv 

TABLE OF CONTENTS ................................................................................................... v 

LIST OF FIGURES ...........................................................................................................vi 

CHAPTER 

I  INTRODUCTION ............................................................................................... 1 

II  PROBLEM DEFINITION AND ASSUMPTIONS ............................................ 4 

Geometric cases .......................................................................................... 6 

Center of gravity ......................................................................................... 7 

III  POTENTIAL FUNCTION, EQUILIBRIA, AND STABILITY ........................ 9 

Equilibria conditions ................................................................................ 10 

Stability conditions ................................................................................... 14 

IV  BIFURCATIONS AND BIFURCATION DIAGRAMS .................................. 17 

V  EXPERIMENTAL VALIDATION .................................................................. 21 

VI  CONCLUSION ................................................................................................. 25 

REFERENCES ................................................................................................................. 26 

CONTACT INFORMATION .......................................................................................... 27 



vi 
 

LIST OF FIGURES 

FIGURE Page 

1. Vessel geometry ..................................................................................................... 5 

2. Liquid cross-section geometry ............................................................................... 5 

3. Vessel cases ............................................................................................................ 6 

4. h-w-θ plot of θ≠0 equilibria .................................................................................. 10 

5. Number of solutions of expression (13) ............................................................... 11 

6. Number of real roots in equation (16) .................................................................. 13 

7. Number of solutions in equation (16) with contraint (17).................................... 13 

8. Total number of equilibria for the vessel.. ........................................................... 14 

9. Coexistence of equilibria at w=2, h=0.5 ............................................................... 16 

10. Bifurcation diagrams ............................................................................................ 19 

11. Unfolding of the bifurcation diagrams near the cusp.. ......................................... 20 

12. Test bucket design and apparatus ......................................................................... 21 

13. Experimental results ............................................................................................. 23 



1 
 

CHAPTER I 

INTRODUCTION
1
 

 

Determining equilibrium positions of structures and characterizing their stability is a 

common engineering task. Fluid-structure interactions are one of the many stability 

concerns in dynamic systems. For example, some marine structures such as floating oil 

rigs and dry-docks use water as ballast to stabilize the structure. Vehicles such as 

aircraft, boats, and machinery operate under conditions where the fuel tank or liquid 

payload may adversely affect the stability of the vehicle due to sloshing13. Determining 

the behavior of the liquid in a tank is an important consideration in the design and 

analysis of these devices. These examples provide the motivation for our stability 

analysis of a rectangular liquid-filled vessel. 

This paper discusses the static stability of a vessel with a rectangular cross section that 

can pivot about a fixed point and contains liquid4. An equally important purpose for this 

paper is to present an example through which the concepts of bifurcations, potential 

functions, and stability of non-linear physical systems becomes more available to 

students. The experimental setup described here is easy to build and may serve as an 

effective classroom demonstration. A similar system -a hanging block- is studied by 

Stépán and Bianchi (1994). They characterize the stability of a mass hanging from two 

                                                 
1This thesis follows the style of American Journal of Physics. 



2 
 

ropes by using a potential function depending on various geometric parameters of the 

system. 

Research into the stability of floating bodies has a long history, starting with 

Archimedes' On Floating Bodies. The ship problem asks to relate the buoyancy force to 

ship stability. Locating equilibrium positions of floating objects and ascertaining the 

stability of these equilibria is not a trivial exercise. Duffy (1993) consider the 

equilibrium positions of partially submerged rods supported at one end and show the 

existence of simple bifurcations and the jump phenomenon (hysteresis) in the problem. 

Erdös et al. (1992) investigate the equilibrium configurations for floating solid prisms of 

square and equilateral triangular cross-section. Delbourgo (1987) provides a solution to 

the metacentric problem for a floating plank. Our system can be thought of as an 

inverted ship problem (for the ship problem, the body is submerged in the liquid). While 

Delbourgo's problem is analogous to ours and his results are similar, we believe that our 

exposition is more detailed and lucid, thereby making this type of problems more known 

to the nonlinear dynamics community. 

We start by defining the geometry of the vessel and the liquid contained within in 

Section 0. The physical parameters that are varied are the amount of liquid, the pivot-

height to vessel-width ratio, and the angle of rotation about the pivot. The algebraic 

equations describing the location of the center of gravity of the liquid are derived. From 

these equations, the equilibrium positions of the vessel are expressed in Section 0. The 

stability of the equilibrium positions is determined with a potential function. The results 
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from the equilibrium calculations and stability analysis are used to construct bifurcation 

diagrams for various physical parameters of the vessel in Section 0. These diagrams are 

then compared to experimental data in Section 0. 
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CHAPTER II 

PROBLEM DEFINITION AND ASSUMPTIONS 

 

The object of our study (hereupon called vessel) is illustrated in Figure 1. We are 

concerned with static equilibrium states of the vessel-liquid system and their stability. 

All dynamic effects are excluded, including angular acceleration of the system and 

sloshing of the liquid. We assume that the walls of the vessel have negligible thickness. 

Furthermore, the vessel is assumed to be tall enough to avoid spillage. 

The vessel has a rectangular cross section -characterized by the width W- and contains a 

liquid with cross-sectional area of H∙W. The distance of the pivot from the base is P. 

Figure 2 depicts a situation when the vessel is rotated about the pivot by angle θ. 

Hereon, we illustrate the liquid rotated and the vessel stationary for simplicity. 
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Figure 1: Vessel geometry 

 
Figure 2: Liquid cross-section geometry 

All parameters are non-dimensionalized by scaling with the pivot height P, i.e.  

 H
h

P
   

 W
w

P
   

Without loss of generality (due to the symmetry of the vessel), we will assume non-

negative θ in the calculations8. Using the coordinate system defined in Figure 2, the 

position vectors for the bottom corners of the vessel, A and B, relative to O can be 

expressed in terms of θ≥0 as  

 ˆ ˆsin cos cos
2 2

A

w w
r i j  

   
      
   

  

 ˆ ˆsin cos cos
2 2

B

w w
r i j  

   
      
   

  

These expressions will later be used to derive the location of the center of gravity (CG) 

of the liquid cross-section.  
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Geometric cases 

The shape of the liquid’s cross-section is dependent on the pivot angle θ and amount of 

liquid in the vessel. The cross-section could either be trapezoidal (Figure 3a) or 

triangular (Figure 3b), referred to as Case 1 and Case 2, respectively. 

 

a) Case 1 

 

b) Case 2 

Figure 3: Vessel cases 

The triangular section of liquid is defined by the points A, E and F. The relative 

positions of points E and F with respect to A are expressed by  

 /
ˆmax , 2 '

tan
E A

hw
r w i



 
   

 
 (1) 

 /
ˆ2 tan 'F Ar hw j  (2) 
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Equation (1) expresses that / /E A E Ar r  is physically limited to the vessel-width, i.e. 

/E Ar w . This constraint results in the two cases mentioned above, i.e. trapezoidal (Case 

1) or triangular (Case 2) cross-section, characterized by the inequalities  

 2
Case 1: tan ,

h

w
   (3) 

 2
Case 2: tan .

h

w
   (4) 

Center of gravity 

The equilibria of the vessel are determined by first finding the center of gravity (CG) of 

the liquid. CG1 (cf. Figure 3) is located at the centroid of the triangle, and CG2 is 

located at the centroid of the parallelogram. 

 
1

2 2 tan ˆcos 1 sin
3 tan 2 3

2 tan 2 ˆ1 cos sin ,
3 3 tan 2

CG

hw w hw
r i

hw hw w
j


 




 



    
          
     

    
          
     

 (5) 

 2

tan ˆ ˆ1 sin 1 cos sin .
4 2 2 4

CG

w h h w
r i j


  

    
         
    

 (6) 

The CG for the whole liquid cross-section is calculated using a weighted average of the 

coordinates of the two CGs and the corresponding areas A1 and A2, i.e. 

 1 1 2 2

1 2

,CG CG
CG

r A r A
r

A A





 (7) 

where the areas are 
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2

1

2

2

tan Case 1
,

Case 2

tan Case 1

0 Case 2.

w
A

hw

hw w
A






 


 
 


 (8) 

The center of gravity of the liquid cross-section is thus given by 

 
2 2 2 2tan h w tan sinˆ ˆ1 sin i+ -1 cos + j, Case 1
24 12 2 2 24h

2 2 tan ˆcos 1 sin Case 2
3 tan 2 3

2 tan 2 ˆ1 cos sin
3 3 tan 2

CG

w w h

h h

hw w hw
i

hw hw w

r

  
 


 




 



    
      

    

    
          

    

    
         

     

.j













 (9) 
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CHAPTER III 

POTENTIAL FUNCTION, EQUILIBRIA, AND STABILITY 

 

The equilibrium angles of the vessel and their stability are determined by analyzing the 

non-dimensional potential function6  defined by the ĵ  component of the CG location: 

 

2 tan sin
1 cos , Case 1

2 24
ˆ·

2 tan 2
1 cos sin . Case 2

3 3 tan 2

CG

h w

h
U r j

hw hw w

 



 



 
  

 
  

            
   

 (10) 

Physically, the vessel is in equilibrium when the CG of the cross-section of the liquid is 

on the vertical axis. This is expressed as ˆ· 0CGr i  . It is also true that ˆ· 0CGr i   

corresponds to local extrema of the potential function, i.e. 

 

2 2 2

1 3
22 2

tan
1 sin , Case 1

24 12 2
0

2 2
tan tan tan . Case 2

3 2 3

w w h

h hdU

d hw w hw





  

 
   

   


  

 (11) 

We will later use the second derivative of the potential function to classify the stability 

of particular equilibria. 
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Equilibria conditions 

Plotted in Figure 4 are the non-zero equilibrium positions given by equation (11) in h-w-

θ space. The left and right shaded regions depict Case 2 and Case 1 equilibria 

respectively. 

 

Figure 4: h-w-θ plot of θ≠0 equilibria 

As can be observed, for a given value of h and w, multiple θ solutions can exist. We now 

define the domains in which different numbers of equilibria exist9. 

Case 1 equilibria are determined by (cf. equation (11)) 

 
2 2 2tan 2

1 sin 0, 0 tan .
24 12 2

w w h h

h h w


 

 
      

 
 (12) 
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Clearly, θ=0 is always a solution. Other solutions satisfy 

  2 2

2

12 2
tan 2 2, 0 tan .

h
h h

w w
       (13) 

Expression (13) is equivalent to the two inequalities 

  
2

2
1 1,

6

w
h    (14) 

 
2 23 9

,
4 8 16

w
h
 

   
 

 (15) 

which determine that a positive θ solution exists between the two half-ellipses shown in 

Figure 5.  For later reference, we refer to equation  
2

2
1 1

6

w
h    as curve I. 

 

Figure 5: Number of solutions of expression (13) 

Case 2 equilibria are given by 
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1 3

22 2
2 2

tan tan tan 0,
3 2 3

hw w hw
       (16) 

subject to the constraint 

 2
tan .

h

w
   (17) 

It can be shown that equation (16) has three non-negative roots. The regions in h-w 

space with one or three real roots are separated by a curve on which equation (16) has a 

double root. For equation (16) to have a double root it is necessary that its derivative 

vanishes, i.e. 

 
3

23 18tan 8 2 tan 0.w hw      (18) 

Equations (16) and (18) are now combined and solved for h and w to give the boundary 

in parametric form in terms of θ as 

  
  

2

2 2

9tan
,

tan 3 3tan 1
h




 


 
 (19) 

  
 2

2

2tan tan 3
.

3tan 1
w

 








 (20) 

The parametric curve, referred to as curve II,     ,h w   is plotted in Figure 6. The 

region left of the curve is where equation (16) has three real roots.2 

Substituting the constraint (17) into equation (16) gives 

                                                 
2 This statement can be proved by considering the h=0, w=2 case. Equation (16) reduces to

3tan tan 0   , which clearly has three real roots. By a continuity argument, equation (16) has three 
real roots in the region left of the double root curve. 



13 
 

 3/2 5/2 5/212 8 0,h w h w hw     (21) 

which can also be expressed as 

 
2 23 9

.
4 8 16

w
h
 

   
 

 (22) 

Outside of this elliptical region (bounded by curve I), one of the possible real roots does 

not satisfy constraint (17). Figure 7 shows the number of valid Case 2 solutions in the h-

w plane. 

 

Figure 6: Number of real roots in equation (16) 

 

Figure 7: Number of solutions in equation (16) 
with contraint (17) 

We are now in a position to present information about all equilibria of the vessel. Recall 

that in the calculations θ was assumed to be non-negative. Without this restriction each 

Case 1 and Case 2 solution corresponds to two equilibrium configurations of the vessel, 

resulting in an odd number of equilibria for the system (θ =0, Case 1, and Case 2 

equilibria). Figure 8 shows the various regions and indicates the total number of 

equilibria. The gray region is where Case 2 equilibria are present. 
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Figure 8: Total number of equilibria for the vessel.  Solid lines demarcate regions with different number of 
equilibria.  The shaded region refers to the validity domain of Case 2. 

Stability conditions 

An equilibrium position is stable or unstable if the second derivative of the potential 

function evaluated at the equilibrium is positive or negative, respectively (corresponding 

to a local minimum or maximum of the potential function)6. The second derivative of the 

potential function (10) is 

 
2

2 -1 4 -3

2

2 5 3 1 1 3 5
- -

2 2 2 2 2 2

1 cos 2cos 3sin cos +2sin cos , Case 1
2 24

2
sin cos +6sin cos +sin cos cos sin . Case 2

6 2

h w

hd U

d hw w

     


       

 
   

 
 

      

 (23) 

The stability condition for θ =0 assumes a particularly simple form: 
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2 2

02
1 0,

2 12

d U h w

d h



    ∣  (24) 

  
2

2
1 1.

6

w
h    (25) 

The θ =0 equilibrium is therefore stable inside the elliptical region bounded by curve I in 

Figure 8. Even though the stability criterion (25) is local in nature, it also provides 

global information about the stability of all system equilibria. Maxima of the one-

dimensional potential function cannot exist without a minimum in between, thus 

equilibrium solutions for the system must alternate between stable and unstable. This 

implies that the stability of all equilibria can be determined based on the stability of the θ 

=0 case alone. 

To further illustrate the coexistence of equilibria for a pair of h and w and their 

alternating stability, Figure 9 depicts the θ≥0 equilibria for w=2, h=0.5 and the 

corresponding potential function10. 
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Figure 9: Coexistence of equilibria at w=2, h=0.5 
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CHAPTER IV 

BIFURCATIONS AND BIFURCATION DIAGRAMS 

 

A bifurcation, in general, refers to a qualitative change in system behavior12. In our 

context, this change is characterized by creation or destruction of equilibria. A change in 

the number of equilibria also corresponds to a change in the stability of a branch of 

equilibria. The point where the bifurcation occurs is referred to as the bifurcation point, 

which varies based on the parameters of the system. 

To combine the information about the location and stability of equilibria, bifurcation 

diagrams are constructed. The bifurcation diagrams for several sets of parameters are 

shown in Figure 10. Note that the full diagrams are symmetric about θ =0. 

There are several features on the bifurcation diagrams worth pointing out. A pitchfork 

bifurcation
5 is formed when two equilibrium branches emanate from the θ =0 

equilibrium. In the previous Section we established that the θ =0 equilibrium changes 

from stable to unstable by crossing curve I in the h-w parameter plane (Figure 8), while 

two additional equilibria appear simultaneously. This pitchfork bifurcation exhibited is 

therefore sub-critical. Similarly, we have a sub-critical pitchfork by crossing the cusp at 

w=2, h=9/16 (Figure 10c).  
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A saddle-node bifurcation
7 is where a stable and unstable equilibrium points annihilate 

one another12. This type of bifurcation appears in subfigures a,b,d,e of Figure 10. The 

saddle-node bifurcations correspond to curve II (on which double roots of equation (16) 

exist) in Figure 8. The co-existence of multiple stable branches in Figure 10a-d also 

imply that the stable position of the vessel can become path dependent while changing 

the liquid level. This is the so-called hysteresis phenomenon. 

Figure 11 shows the region around the cusp in detail. The points A through J on the h-w 

plane are noted on bifurcation diagrams to explicitly show their respective number of 

equilibria. We also label the curves where saddle-nodes (SN) and pitchforks (PF) occur. 
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a) w=1.777 

 
b) w=1.995 

 
c) w=2 

 
d) w=2.005 

 
e) w=2.285 

Figure 10: Bifurcation Diagrams 
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w=2.1 

 

w=2.0 

 

w=1.9 

Figure 11: Unfolding of the bifurcation diagrams near the cusp. Shaded region referes to Case 2 equilibria 
existing. 
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CHAPTER V 

EXPERIMENTAL VALIDATION 

 

Shown in Figure 12 is the test bucket that was constructed to validate the predicted 

location and stability behavior of the vessel equilibrium positions. The bucket is attached 

to a pivot that allows rotation. The pivot can also be raised and lowered to vary the pivot 

height P. 

  

Figure 12: Test bucket design and apparatus 

The bucket is constructed of Lexan sheets. The top is left open to fill and empty the 

bucket. For structural integrity, all of the seams are reinforced with aluminum angle bars 
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screwed into the corners. The seams are also sealed with silicone. On two sides of the 

bucket, two aluminum flat-bars form tracks for the pivot. The pivot has two clamps that 

grasp the tracks and can be released to adjust the pivot height. The support structure has 

a wooden base and two aluminum angle-bars cantilevered up to support the pivot point. 

At the pivot point, a ball-bearing ensures free rotation of the bucket. A good bearing is 

essential to get accurate and consistent results during the tests. In the theoretical 

derivations the wall thickness was neglected. To minimize the influence of the mass of 

the bucket on the measurements, the center of gravity of the bucket was adjusted to 

coincide with the axis of the pivot. To achieve this, steel plates were attached to the 

bottom of the bucket.  

The first step in running the tests was to set the pivot height to a specific value. Setting 

this parameter accurately is crucial for the results to be accurate, because the equilibrium 

positions change significantly with small variations in the pivot height. The bucket was 

then filled with the desired amount of water. Next, the bucket was manually rotated to 

find the equilibrium points. The bucket settled on stable positions. Unstable positions 

were located by manually rotating the bucket until a point was found where the bucket 

tried to dump in opposite directions on either side of a point. The angles were measured 

by a protractor attached to the support structure. 

The angles were measured with an accuracy of ±1°. The water height (H), pivot height 

(P), and vessel width (W) were measured with precision of ±1.6mm (± 1/16”), ±1.6mm 

(±1/16”), and ±0.8mm (±1/32”) respectively. The precision of the non-dimensional 
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water height (h) evaluates to ±0.022, and the non-dimensional vessel width (w) precision 

evaluates to ±0.032. The following diagrams are the results of three tests run on the 

bucket. The points shown are the test results and the lines are the calculated predictions. 

The uncertainty in the measurements is not shown in the results. 

 

 
a) w=1.777 

 
b) w=2 

 
c) w=2.285 

Figure 13: Experimental Results 

The data from the experiments very closely follow the predicted trends. The areas which 

were difficult to test were where the pivot angle changes significantly with small 
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changes in the water height, i.e. lines with steep slopes on the diagrams. This is evident 

in Figure 13a where the unstable region near h=0.3 was not found and in Figure 13b 

where only two unstable states were found near h=0.3. It should also be noted in Figure 

13c that there exists a region where no stable equilibria exist, which accounts for the 

bucket dumping immediately. 
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CHAPTER VI 

CONCLUSION 

 

The vessel-liquid system analyzed in this paper has been shown to have coexisting (up to 

seven) equilibria under many conditions. Closed-form conditions for the existence of 

various numbers of equilibria were given and the corresponding domains in the h-w 

plane were illustrated. A simple stability condition for θ=0 was also found, which also 

provided information about the stability of all co-existing equilibria. The existence of 

sub-critical pitchfork and saddle-node bifurcations were proved and bifurcation diagrams 

were constructed, together with a detailed unfolding of the bifurcation diagrams around 

the cusp point. To experimentally validate the findings, a rectangular cross-section 

bucket mounted on a pivot was used. Experimental data agrees very well with the 

theoretically predicted equilibrium positions and their stability. 
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