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Here a modification to the hybrid input–output (HIO) method of phase retrieval is presented which aides
in mitigating the negative effects of low signal-to-noise ratios (SNRs). Various type of interferometers
measure diffraction patterns which are used to determine the Fourier transformmodulus of an objective.
Interferometry often suffers from very low SNRs making phase retrieval difficult because of the sensi-
tivity of most phase retrieval algorithms to local minima. Here we analyze the effect of noise on the HIO
method. The result is used as a rationale for the proposedmodification to the HIOmethod. The algorithm
presented here introduces a filtering scheme which removes much of the Fourier modulus noise. Exam-
ples are shown and the results are compared to the HIO method with and without the proposed modi-
fication. Comparisons are also made to other methods of filtering the Fourier modulus noise. © 2013
Optical Society of America
OCIS codes: (100.3020) Image reconstruction-restoration; (100.5070) Phase retrieval.
http://dx.doi.org/10.1364/AO.52.003031

1. Introduction

Many applications of phase retrieval suffer from low
signal-to-noise ratio (SNR) levels in the acquisition of
the Fourier modulus of the objective. A common
method of phase retrieval in the fields of astronomy
and microscopy is the hybrid input–output (HIO) al-
gorithm as developed by Fienup [1]. This algorithm
has been shown to recover an image from only its
Fourier transform modulus. The performance of
the HIO in the presence of noisy modulus data has
been discussed; however, it does not have specific
provisions for compensating for noise in the Fourier
modulus data [2–5]. There have been very few pro-
posed methods to filter noise from the modulus. A
modification to the HIO was proposed by Liu [6,7],
Bates and Mnyama [8], and Kohl et al. [9]. The algo-
rithm in [9] is similar to the algorithm presented
here, but has a difference in the implementation

and rationale. The results by [6], [8], and [9] will be
compared to the algorithm proposed here.

The HIO algorithm uses the image domain f �x; y�
and the image’s Fourier domain F�u; v� which are
related by the Fourier transform

f �x; y� � F−1fjF�u; v�j exp�iφ�u; v��g; (1)

where F−1f·g is the two-dimensional inverse Fourier
transform, jF�u; v�j is the given modulus, and φ�u; v�
is the unknown phase. The HIO algorithm has four
steps to determine the unknown phase starting with
an initial guess of the image in g0�x; y�. First, the
image estimate gk�x; y� is Fourier transformed giving
Gk�u; v�. Second, the input Fourier modulus jF�u; v�j
is imposed on Gk�u; v� using

G0
k�u; v� � jF�u; v�j exp�i arg�Gk�u; v���: (2)

Third, the result is inverse Fourier transformed, re-
sulting in g0k�x; y�. Lastly, the image is known a priori
to be real valued, to be nonnegative, and possibly to
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have finite support. The next iteration’s image is
defined by

gk�1�x; y� �
�
g0k�x; y�; �x; y� ∉ γ
gk�x; y� − βg0k�x; y�; �x; y� ∈ γ

; (3)

where γ is the region of the image that is assumed to
be background and β is a feedback parameter.

As has been shown previously, the unique feature
in the HIO is that the image’s background constraint
is not rigidly imposed, as is done in the Error-Reduc-
tion algorithm by Gerchberg and Saxton [10]. The
HIO, rather, takes a gradient step toward imposing
the background constraint. In a similar fashion, the
HIO imposes the constraint that the image estimate
has a Fourier transform modulus equal to a given in-
put value. When this input Fourier modulus data
contains noise, the HIO may not work properly.

The modulus noise may cause pixels in the back-
ground of the image to be nonzero even when the cor-
rect phase value has been estimated. Additionally,
the modulus noise may cause pixels to be complex
valued before the image domain constraint is applied
even for proper phase estimates. The HIO, however,
assumes that background pixels are, for the most
part, zero and all pixels are real valued. As stated
in [3] this can cause convergence issues, because the
image and Fourier domain constraints contradict.
The algorithm tends to oscillate between imposing
the Fourier domain constraint and imposing the
image domain constraint. The algorithm presented
here will focus on filtering the noise, thus theoreti-
cally allowing all constraints to be satisfied simulta-
neously. In practice, this filtering would take infinite
iterations, but the effects are significant within a
very few iterations.

Figure 1, image (a) shows a sample image of a
fictitious satellite. The image is 30 × 30 pixels with
values ranging from 0 to 1. This image is used as
a diagnostic because it has many background pixels
not in γ, i.e., the foreground is concave. Also, the
image is undersampled. Its autocorrelation exceeds
the bounds of the �u; v� plane. Figure 1, image (b)
is after phase retrieval with the HIO with β � 0.9.
The result is comparable to those typical of the HIO
as shown in [2,8]. The Fourier modulus data was
corrupted with random Gaussian noise according to

jF�u; v�j � jF�−u;−v�j
� jFTrue�u; v��1�N�0; σ� �N�0; σ�i�j (4)

with a standard deviation of σ � 0.4. Additionally,
the symmetry of the �u; v� plane was preserved.
The model in Eq. (4) is a simplified model commonly
used in intensity correlation interferometry for
modeling the statistics of coherence magnitude
measurements [11], which is based on the classical
discussions in [12]. The Gaussian approximation is
applicable because, in intensity correlation inter-
ferometry, several coherence magnitude estimates
can be formed and averaged, thus invoking the cen-
tral limit theorem which reduces the noise model to a
Gaussian. The resulting corruption of the Fourier
modulus data is comparable to many other models
such as those in [1,2,7,8,13]. The noise level in this
example represents a low enough SNR that conver-
gence of the HIO is not guaranteed for every at-
tempted initial condition; sometimes it stalls. The
initial guess of the image used here is simply uni-
formly randomly distributed values.

A metric used to describe the modulus error is the
sum of the deviation squared from the true modulus
normalized by the dimension of the image N,

~E2
k � N−2

X
�jFtrue�u; v�j − jG0

k�u; v�j�2; (5)

which in reality is unknown, but here it will provide
a useful diagnostic. In this example, the modulus
error is about 2.5. Shown in Fig. 2 is the norm of
the image domain constraint violations,

e2k �
X
γ

gk�x; y�2; (6)

at each iteration. The constraint violations decrease
by about half after the first 10 iterations as the image
develops; however, convergence is quickly halted
and an oscillation occurs. Figure 3 shows the norm of
the Fourier modulus constraint violations,

E2
k � N−2

X
�jGk�u; v�j − F�u; v��2; (7)

at each iteration. It too stalls and oscillates as the
image domain error does.

(a) True Image (b) Estimate, Iteration 500

Fig. 1. Example result used to demonstrate constraint oscillation
in the HIO. The box indicates the boundary of γ.
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Fig. 2. Image constraint violation versus iteration for the HIO.
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A. Problem Statement

The oscillations in the image and Fourier domain
constraint violations can be attributed to the idea
that satisfying one constraint will cause a violation
in the opposing constraint. A modification to the HIO
is thus desired that can settle these oscillations and
prevent the HIO from stalling at these high con-
straint violation levels by filtering the noise from
the modulus data.

B. Effect of Noise on the HIO

To gain insight into the effect of noise on the HIO,
noise here is thought of as an addition of delta func-
tions at various locations in the Fourier domain. The
image and Fourier domains are considered discrete;
therefore, the Fourier transforms between the two
domains must be discrete.

If the true image’s Fourier domain has values
FTrue�u; v� for an image of dimensions �M;N�, then
the noisy Fourier domain is

~G�u; v� � FTrue�u; v� �
X
�a;b�

Δ�a; b�δ�u − a; v − b�: (8)

In Eq. (8), Δ�a; b� is the magnitude of the noise
component, and a and b are the UV plane locations
of the noise component. Relating back to Eq. (4),
Δ�u; v� � F�u; v� − FTrue�u; v�. This noise model can
capture the statistics of any noise model as Δ�u; v�
can be any value.

As a simplification, the linearity of the Fourier
transform is exploited. Since the noisy Fourier
domain is a sum of the image data and the noise, the
noise is considered independent of the image’s data.
This assumption is valid for a Fourier transform, but
not entirely valid for the HIO due to the image do-
main constraint being imposed on all of the image
data and noise, not just the noise. Although not
entirely valid for the HIO, this assumption gives
valuable insight. Additionally, we are tracking only
a single noise component to see the filtering effect,
i.e., �a; b�, is constant here so let Δ�a; b� � Δ.

Considering the noise only, the Fourier domain
before step 3 in the HIO is

G0�u; v� � Δδ�u − a; v − b�: (9)

The inverse Fourier transform of this expression
(step 3 in the HIO) is

f 0�x; y� � Δ
MN

e2πi��ax∕M���by∕N��; (10)

for x � �0;M − 1� and y � �0; N − 1�. In the HIO, the
image is thought to be real valued, positive, and
of finite support. If the image has nonzero pixels
for x � �A;M − 1 − A� and y � �B;N − 1 − B�, then the
constrained image (step 4 in the HIO) is

f �x;y��
� jf 0�x;y�j; A≤m≤M−1−A&B≤n≤N−1−B
0; otherwise

� Δ
MN

�
1; A≤m≤M−1−A&B≤n≤N−1−B
0; otherwise :

(11)

Note that A and B must be nonnegative. The corre-
sponding discrete Fourier transform (after much
algebraic simplification) is

G�u;v� � Δ
MN

exp
�
iπ
�
u
M −4A−1

M
� v

N −4B−1
N

��

×
sin

�
M−2A
M πu

�

sin
�
1
Mπu

� sin
�
N−2B
N πv

�

sin
�
1
N πv

� : (12)

The form of Eq. (12) resembles the continuous
Fourier transform of rectangle functions which would
be sinc functions in continuous space; however, the
discrete Fourier transform adds the sin terms in the
denominator making it the Dirichlet or “periodic sinc”
function [14].

Since Eq. (12) is rather complex to analyze, con-
sider its maximum magnitude,

G�0; 0� � Δ
M − 2A

M
N − 2B

N
: (13)

The maximum magnitude is proportional to the
original noise magnitude Δ but is scaled by the factor

M − 2A
M

N − 2B
N

: �14�

This attenuation factor shows that although more
pixels in the Fourier domain are affected by the noise
than in Eq. (9), the maximum magnitude is smaller.

For additional quantification of this attenuation
that the HIO causes, consider the Frobenius norm
of jG�u; v�j, which can be shown to be

Δ
M − 2A

M
N − 2B

N
; (15)

opposed to the Frobenius norm of jG0�u; v�j, which
is Δ.

This result shows that the influence of the noise in
the Fourier modulus is reduced proportional to the
support of the image. Conceptually, if one thinks of
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Fig. 3. Modulus constraint violation versus iteration for the HIO.
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the power of the frequencies in G0�u; v�, the HIO es-
sentially acts as a filter, thus reducing the total
power contained within G�u; v� due to the noise.

2. Constraint Relaxation

Previously, an iteration of the HIO equations was
shown to reduce the power of noise in the Fourier
modulus when going fromG0

k�u; v� toGk�1�u; v�. With
this effect in mind, it is proposed that Gk�1�u; v� is a
better estimate of the true Fourier modulus than
F�u; v�. This thought implies that the Fourier modu-
lus should be updated at every iteration to make
G0

k�u; v� resemble Gk�u; v� more than F�u; v�. This
update can be performed in a method similar to
the image constraint in the HIO. Using the notation
common in the HIO, the second step in the HIO
should be

jG0
k�u; v�j � �1 − λ�F�u; v� � λjGk�u; v�j: (16)

Here F�u; v� is the initial Fourier modulus on which
we wish to perform phase retrieval, and jGk�u; v�j is
the result of the HIO Fourier transform step at the
current iteration. The name Constraint Relaxation is
derived from the fact that the Fourier modulus at
each iteration jG0

k�u; v�j is not rigidly constrained
to be the initial value F�u; v�. Rather, it is updated
based on the current estimate with the relaxation
parameter λ.

The choice for the value of λ has two primary con-
siderations. The first consideration is suppressing
the oscillations in the image and Fourier domain con-
straint violations. The oscillations can be prevented
for a value of λ on the order of 0.01 to 0.001. For these
small values of λ the constraint is relaxed enough
to create an intersection between the image and Fou-
rier domain constraints. This relaxation is performed
to aide in convergence, i.e., it can be performed start-
ing at iteration one. The second consideration for
choosing a λ is filtering large amounts of Fourier
modulus noise. To achieve noticeable filtering λ
should be between 0.5 and 1 (but not equal to unity).
This large amount of relaxation should not be per-
formed before the HIO has converged and stalled.
Small values of λ aide in convergence; large values
of λ can filter noise after convergence in addition to
suppressing the constraint oscillations.

The form of (16) is similar to the method in [15].
The approach formulates the constraint relaxation
with the intent of finding where the modulus and im-
age domain constraints intersect. Here we maintain
that with noise in the modulus, these two constraints
may not intersect at all. Instead of seeking an inter-
section which may not exist, we wish to manipulate
the data set to create an intersection by filtering the
noise.

A method that is very close to the algorithm
presented here is

jG0
k�u; v�j � �1 − λ�jGk−1�u; v�j � λjGk�u; v�j; (17)

developed by Levi and Stark [16]. Similarly, Kohl’s
over-relaxation method of the form

G0
k�u; v� � �1 − λA�Gk�u; v�

� λAF�u; v� exp�i arg�Gk�u; v��� (18)

is nearly identical to the one presented here except
the relaxation parameter varies randomly at every
iteration. They do not give a filtering style rationale
because they do not consider modulus noise. They,
like [15,17], were concerned with solving the HIO
stagnation problem but not when the stagnation is
caused by noise. In fact, they do not mentionmodulus
noise in their algorithm’s development. Additionally,
the constraint given in Eq. (17) is vulnerable to insta-
bility. Since the initial value is not present in the
constraint, the jG0

k�u; v�j value can “run away.” For
the methods by Levi, Stark, and Kohl, comparisons
will be given in a later section.

The algorithm presented here is uniquely devel-
oped with filtering noise in mind. Due to the similar-
ities, the effect that it has on exiting local minima can
be well explained by the comprehensive discussions
in [9,15,16].

3. Examples

To show the effect constraint relaxation has on the
HIO, the previous example in Fig. 1 was run for an
additional 500 iterations. The constraint relaxation
was implemented after iteration 500. The relaxation
parameter λ was set to 0.9.

Figure 4 shows (a) the image estimate just before
the Fourier modulus constraint was relaxed and
(b) after the relaxation was implemented for 500
iterations. The resulting image shows a few artifacts,
but the image quality is indisputably better than the
prerelaxation estimate, both in the foreground and
background. Figure 5 shows the reduction in the im-
age constraint violations. The oscillations cease, and
the value decreases to nearly zero. The first iteration
where the constraint relaxation is implemented
sometimes yields a higher image constraint violation
value, but the violations quickly decrease. Figure 6
shows the reduction in the Fourier modulus con-
straint violations.

(a) Estimate, Iteration 500 (b) Estimate, Iteration 1000

Fig. 4. Image estimate comparison before and after the
constraint relaxation was implemented. The box indicates the
boundary of γ.
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Figure 7 shows the Fourier modulus error defined
by Eq. (5). Like the image constraint violations, a
spike often occurs when the relaxation begins, but
the value quickly decreases. The total noise reduc-
tion in this case is 62%. This is the most impressive
result from the constraint relaxation, as this result
shows that the value jG0

k�u; v�j contains 62% less
noise than the original input jF�u; v�jwhen compared
to FTrue�u; v�. In various tests with the parameters
and image used in this example, the noise reduction
ranged from 30% up to 92%. This makes the example
being shown here a nominal case.

An interesting effect that the relaxation has on the
image is a reduction in the number of pixels that are
complex valued prior to the image constraint being
imposed. The quantity

����������������������������������������X
arg �g0k�u; v��2

q
�19�

is reduced to nearly zero. In the example being
discussed here, Fig. 8 shows this effect.

The previous example showed the image of a fic-
tional satellite being reconstructed from its noisy
Fourier modulus. To demonstrate the relaxed con-
straint method with a more realistic image, consider
the image of Saturn in Fig. 9(a). The Fourier modulus
is corrupted according to Eq. (4) in the same manner
as the previous example with standard deviation of
0.4. The HIO was run without the constraint relax-
ation for 500 iterations, and the results are shown in
Fig. 9(b).

The relaxation was again performed from itera-
tions 500 to 1000 as shown in Fig. 9(c). The back-
ground region is nearly completely devoid of
artifacts. The foreground is improved slightly, as
shown by the planet’s rings and silhouette being
sharpened. The improvement of the foreground is
not significant; however, the image is suffering from
the convolution of the proper and flipped images.
This is evident from the rings not being shown in
front of the planet. Through methods such as those
in [3,5,18–20] this can be corrected. Even with the
flipped solution convolution, the Fourier modulus
noise reduction was about 58%. With the addition
of methods of obtaining a unique solution, which is
beyond the scope of the discussions here, even more
filtering is possible. We propose that algorithms such
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Fig. 5. Image constraint violation versus iteration. Constraint re-
laxation began at iteration 500.

0 200 400 600 800 1000
1

2

3

4

5

Iteration

M
od

ul
us

 C
on

st
ra

in
t V

io
la

tio
n

Fig. 6. Modulus constraint violation versus iteration. Constraint
relaxation began at iteration 500.
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Fig. 7. Fourier modulus error versus iteration.
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Fig. 8. Sum of the image’s imaginary pixels prior to the image
constraint being imposed versus iteration.

(a) True Image (b) Estimate, Iteration 500 (c) Estimate, Iteration 1000

Fig. 9. Example result showing (a) the true image and (b) the reconstructed image after 500 iterations without constraint relaxation. The
relaxation was performed from iteration 500 to 1000 with the result shown in (c). The box in (b) and (c) indicates the boundary of γ.
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as those in [3,5,18–20], which better manage the
flipping convolution and support issues, would pro-
vide far superior results if jG0

1000�u; v�j were used
as an input rather than jF�u; v�j, because the issue
of conflicting image domain and Fourier domain
constraint is nearly eliminated.

4. Conclusion

The objective here was to devise a modification to the
HIOmethod of phase retrieval that not only tolerates
noisy modulus data but is capable of filtering the
noise. Filtering the noise was set as a goal to elimi-
nate the oscillations in the image and Fourier do-
main errors and help prevent stagnation of the
HIO. To develop a theoretical basis for a modification
to the HIO, the effect that noise has on an iteration of
the HIO was derived. This analysis showed that the
HIO iteration provides an estimate of the modulus
data that contains less noise than the measured
modulus data. This result led to the development
of the relaxed constraint algorithm. With the addi-
tion of the Fourier modulus constraint relaxation,
the Frobenius norm of the error in the modulus data
has been reduced by as much as 92% for noise levels
high enough that the HIO alone was barely able to
converge.

For comparison, the satellite example given here
was run with various initial conditions and noise
realizations using the method proposed in [6]. The
resulting modulus error was reduced by at most
5% with an average reduction of 1%. The algorithm
in [6] aides in convergence in the presence of noise
but has not been shown as effective at filtering high
amounts of noise in two-dimensional images. The
algorithm proposed in [8] manages to filter some of
the modulus noise by imposing a condition on the
modulus based on the image’s support. Namely, they
rely on the image being largely oversampled. The
algorithm presented here has no such requirement.
In fact, the satellite image is undersampled, the
autocorrelation extends beyond the measured �u; v�
domain. Large oversampling improves the perfor-
mance here; however, it is not a requirement.

The phase retrieval algorithms presented in [9],
[15], and [16] were discussed and shown to be similar
to the algorithm presented here. These algorithms
have extensive ‘projection style’ derivations and are
shown to aide in eliminating local minimum induced
stagnation. They, however, are not formulated to
filter noise. The constraint relaxation by [16] is sus-
ceptible to instability when noise is present. In tests,
we observed comparable noise reduction if the algo-
rithm did not go unstable. At high noise levels, it was
rare for the algorithm to not go unstable. For the
satellite example given here, the noise reduction was
only 32% using [16] as opposed to the 62%. Even
when high levels of noise cancellation occurred, the
filtering was still temporary. The error typically was
decreased sharply when the relaxation was imple-
mented, and afterward the error would steadily grow.

The relaxation method proposed in [9] performed
very well with noiseless data but was never shown
to exceed the noise cancellation seen by the algo-
rithm presented here. Due to the randomization
of the relaxation, the noise reduction drastically var-
ied at each of the iterations. The noise reduction
could possibly be as high as the reduction for the
algorithm presented here but, unless the iterations
were stopped when the random relaxation value
was optimal, the noise reduction was small or the
noise was made worse. These results exemplify our
claim that the algorithm presented here is intended
to filter noise where others do not have this intended
purpose.

Other papers, such as [3,5,21], discuss noise levels
with respect to phase retrieval. The algorithm pro-
posed here differs from these in that not only is
the algorithm able to converge in the present of a
low SNR level, as many do, but the noise is actually
filtered.

In the examples presented here, among others
we have tried, the modulus constraint relaxation
provides superior results when compared to other
methods of phase retrieval with noisy data. With this
form of constraint relaxation combined with more
complex methods of determining the image’s support
and handling double images, phase retrieval
surpassing the current state-of-the-field is possible.
Future work on this topic includes prediction of the
amount of noise reduction possible, extended testing
with nonfinite support images, determination of
optimal values for the relaxation parameter, and
quantification of the oversampling benefits.
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