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Abstract

A recently developed tuning method is compared to an adaptive Smith Predictor control strategy. The robustness of
each method is considered for time-varying plant parameters. Examples with simulations are provided to compare the
methods and present conclusions on the advantages and disadvantages of each. © 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

The PID controller is the most widely used
control algorithm in the process industries because
it is robust and easily applied to many different
types of systems [1,2]. Modern computers will
allow almost any control method to be imple-
mented, but the PID controller is still used for
most process control applications. However, the
three modes of the PID controller, proportional,
integral, and derivative, are not clearly related to
process model parameters. Therefore, it has been
necessary to develop rules to simplify the adjust-
ment of the controller settings [3].

Many controller tuning methods have been
developed over the years. Among the most popular
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are the Ziegler—Nichols method developed in 1942
and the Cohen—Coon method developed in 1953.
These methods seek to provide closed-loop oscil-
lation with a quarter amplitude decay in response
to step changes in set point or load [4,5]. Many
modern controller tuning methods are based on
the Ziegler—Nichols and Cohen—Coon methods
[15]. Recently, Abbas has developed a tuning pro-
cedure that offers superior performance over both
the Ziegler—Nichols and Cohen—Coon methods.
This method seeks to control a first-order plus
time delay (FOPTD) plant to have a closed-loop
response with a specified overshoot [6].

One of the most difficult process dynamics to
control is time delay [7]. When the system dead
time grows large in relation to the time constant,
the PID controller tuning methods may not pro-
vide adequate performance [8]. Furthermore,
many plants exhibit dynamic properties such as
variable dead time or time constant [9].
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A traditional PID controller may show perfor-
mance degradation or may even become unstable
if plant parameters change enough. Adaptive con-
trollers are often implemented to accommodate
these changing situations [10]. There are a number
of adaptive control methods available to process
control engineers including pole-placement, gen-
eralized predictive control (GPC), relay feedback
auto-tuning, and internal model control (IMC)
[10-12]. One popular method is the adaptive
Smith Predictor. This controller uses a digital
form of the standard Smith Predictor along with
the recursive least-squares system identification
algorithm to provide continuously updating
adaptive control [10].

The purpose of this paper is to compare various
methods for adjusting controllers for plant condi-
tions. The performance of the adaptive Smith
Predictor will be compared to that provided by
Abbas. Two examples will be developed and then
used to compare the robustness of the two meth-
ods by introducing changes to the plants during
the simulation.

2. Abbas tuning

The PID controller is by far the most used
method of regulating chemical process systems [1].
A properly tuned PID controller can provide
excellent, robust control of most process systems
[2]. However, the proper setting of the three modes
of a PID controller is not always intuitively
obvious. Through the years, a number of rules and
guidelines have been developed to help the plant
control engineer make the right decisions when
tuning controllers. Two of the best known tuning
methods are Ziegler—Nichols and Cohen—Coon
which both attempt to achieve a quarter amplitude
decay [1,3]. However, in many situations they
generally produce plant responses with more
oscillation than is acceptable to operators. Also,
the calculations do not allow the control system
designer to specify a desired closed-loop response
[6,13]. This often results in the tuning being mod-
ified, or even set to manual mode, to achieve an
overdamped response which will be more accep-
table to the operator [9].

Abbas has developed a tuning method that
relates the controller coefficients to the character-
istics of a FOPTD process model as well as the
desired overshoot of the closed-loop system. For a
PID controller,

K. |:e(t) + rl] Jedt + 1D %e(t)] (1)

the Abbas method specifies the gains as:
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where 7 is the open-loop time constant (s), 6 is the
plant time delay (s), 4 is the desired closed loop
time constant (s), and Kp is the proportional term
of the plant. From Egs. (2)-(4), we see that only
the proportional term of the controller is affected
by the desired closed-loop time constant 4. The
integral and derivative terms are only affected by
the time constant and time delay of the open-loop
plant. A is chosen to achieve the desired closed-
loop performance [6].

Abbas defines two parameters to be used to find
the desired value for the loop gain, K = K.Kp. The
process model is considered by defining R as the
time delay to time constant ratio, and the closed-
loop response is considered by defining the over-
shoot as V. V'is a fraction between 0 and 1; e.g. a
10% desired overshoot requires J'=0.1. Abbas
obtained closed-loop step responses from many
plants via simulation. The data was plotted for a
range of 0.1 <R<S5 and 0< V<0.20. After curve-
fitting a large number of plant results using the
Marquardt-Levenberg optimization algorithm,
the simplest equation that approximates the
experimental data is

_a+ bR
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where the parameters «, b, ¢, d, e, and f are given
in Table 1 for P, PI, and PID controllers [6]. The
controller proportional gain K. is then obtained
by simply dividing the gain obtained from Eq. (5)
by the plant gain Kp.

3. Adaptive control

Control systems engineers have long recognized
the difficulty of controlling processes with dead
time. Standard PI or PID control may not be
adequate for controlling processes with large time
delays [8]. Dead time is a factor in many chemical
and biomedical processes, so PI and PID con-
trollers are often ‘““detuned” to maintain overall
stability [7]. Often, more advanced methods of
control are required for this type of process in
order to improve performance.

Industrial users first began to use adaptive con-
trol methods in the 1970s [16]. An adaptive con-
troller has parameters that can be continuously
adjusted in response to changes in process
dynamics and disturbances [1]. A process plant is a
dynamic environment, so it is not unusual for a
process to undergo significant changes that may
degrade the performance of a standard PID con-
troller or even lead to instability [9]. An adaptive
controller includes a mechanism to update its own
control parameters based on feedback from the
plant output [17].

One type of adaptive controller can be thought
of as having two loops: a typical feedback control
loop consisting of the plant and the controller and
another loop which contains a controller para-
meter adjustment algorithm [17]. The parameter
adjustment loop may include some type of system
identification routine that follows a set of rules to
generate parameter updates [10]. The parameters

Table 1

Abbas gain calculation parameters [6]

Controller a b ¢ d e f

P 0.127 0.247 —-1.050 0.918 —0.838 0.295
PI 0.148 0.186 —1.045 0.497 —0.464 0.590
PID 0.177 0.348 —1.002 0.531 —0.359 0.713

include both those that are related to the nature of
the process and those that can be chosen by the
control designer [18]. The on-line parameter
adjustment mechanism makes the adaptive con-
troller inherently non-linear [17].

There are many methods of recursive system
identification available to control system engineers
today. In the work reported here, the recursive
least squares method, one of the most popular
parameter estimation schemes, has been used [10].
In the least squares method the plant inputs and
outputs are sampled and a curve is optimally fit to
these samples. This curve fitting is performed by
minimizing the sum of the squares of the differ-
ence between the sampled data and the curve [19].
It is important to note, however, that the model
chosen for the system identification must be cap-
able of representing the plant accurately. A best fit
for an inaccurate model will be useless for the
purposes of adaptive control [20].

For some plants with large dead time, a detuned
PID controller may not provide satisfactory per-
formance, and it may be necessary to implement a
more advanced control strategy. One well-known
strategy is the Smith Predictor that was introduced
in 1957 [1]. The Smith Predictor is a model-based
controller that uses the plant model parameters to
control the system [14]. The resulting feedback
signal will not show the effects of the time delay if
the model accurately represents the plant [22].

Since the Smith Predictor is a model-based con-
troller, it is very sensitive to the accuracy of the
process model [14]. Theoretical calculations can
show that the Smith Predictor provides great
improvement in control over traditional methods.
However, the practical improvement is limited
because even small changes in the actual dead time
of a tightly tuned process can lead to instability
[23]. This can be overcome by only applying the
Smith Predictor to systems with well known and
constant gains, time constants, and dead times or
by tuning the controller less aggressively to allow
a greater inaccuracy in the model [14,23]. It has
been shown that there will still be some improve-
ment over PID control as long as the model para-
meters are within 30% of the actual values [14].
Even with this range of inaccuracy allowed, one
must have some understanding of the process to
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be controlled before implementing a Smith Pre-
dictor.

If the process model parameters vary sig-
nificantly with time, an adaptive control algorithm
may be necessary [14]. A continuously self-adjust-
ing controller can change the model parameters so
that they maintain an accurate model. The plant
parameter changes may be due to wear, tempera-
ture changes, production rate changes, or other
factors that may or may not be measured [21].
Automatically adjusting for these plant changes
will ease the implementation of the Smith Pre-
dictor since the model can be updated on-line to
match the process. Therefore, the burden of
developing an exact model and frequent retuning
can be moved from the control engineer to the
adaptive controller [10].

For this work, we have implemented a con-
tinuously updating adaptive controller based on
the digital Smith Predictor. A second-order plant
model was used, and system identification was per-
formed using the recursive least-squares method.
The controller was designed to achieve a specified
closed-loop time constant 7,,[10].

To implement the recursive least squares algo-
rithm, we first describe the plant as a discrete
transfer function, Gp (z™1):

. Be(zh

1\ _ PP d

Gp(z7) = = (6)
where

Boz ) =biz V4 bz 24 4 bz

Ap N =14aiz7 '+ +apz™" (7)

The relationship between the plant output y(k)
and the plant input u(k) can be written as

Y)Y ay(k — iy =y bulk — d — j) + e(k).
i=1 j=1

®)

Eq. (8) can be written in the compact form

(k) = 67 x(k) + e(k). 9)

The vector 6 contains the parameters that are
estimated. It is of the form

O=[ara - aybiby - by]" (10)
The data vector, x, is

30 = [=3t=1) =3k =2) -+ = (k=)

uk—d— 1) u(k—d—2) - u(k — d — m)]T[lo].

(11
The estimation model of the process is
Sy Ba(Eh) -
1 m d

. = 12
Gn(=™) =32 1y (12)
where
Bn(z™hH = 51271 + 522’2 +...+ l;mz"”
An Y =1+a1z7" + .. 4+ ayz™" (13)

and the ~symbol denotes an estimated parameter.
The parameter estimates are compacted into a
vector as

é:[alaz.--anéléz-.-émf (14)

resulting in a model output of
F(k) = 67 x(k)[10]. (15)

For the recursive algorithm to be able to update
at each sample time, it is necessary to define an
error. The model prediction error is defined as

e(k) = y(k) — 67 (k — 1)x(k) (16)
which is the difference between the plant output
and the model output. This error is used to update
the parameter estimate according to

6(k) = b(k — 1) + G(k)e(k) (17

where the estimator gain matrix is defined as
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B P(k — 1)x(k)
Gk) = v + xT(k)P(k — Dx(k) (18)

The forgetting factor, vy, will be chosen by the
designer as a value between 0 and 1 as described
below. The covariance matrix P is updated using

P(k) = % [1 — G(k)x" (k)| P(k — 1)[10]. (19)

The forgetting factor in Eq. (18) allows new
data to be weighted more heavily than old data
when updating the parameters. Thus, a large
transient in the past will be discounted as time
goes by. This factor allows us to adjust the para-
meter estimate convergence speed as well as to fil-
ter out the effects of noise in the system. In
general, choosing 0.98 < v < 0.995 gives a good
balance between speed and noise susceptibility
[10]. .

The initial values of P(k) and 6(k) are chosen as
estimates and then allowed to settle to their final
values as the program goes through several itera-
tions [20]. There is no unique way to initialize the
algorithm because it depends on knowledge of the
process [17]. One suggestion is to set 8(0) =zero
and P(0)=al where « is a large scalar [25]. For the
examples presented here, the initial estimates were
chosen to be zero and P(k) is chosen to be 1001
[10,17].

For good performance, the system identification
must be allowed to run before closing the control
loop. This will initialize the controller to close
estimates of the plant parameters. Also, it is
necessary to pre-tune the controller. For this
work, we have used the Abbas tuning method to
calculate the initial tuning settings. This will give
both controllers a common starting point and
provide a more realistic comparison of perfor-
mance when changes are introduced.

4. Robustness comparisons

Real processes are not static. They operate
under conditions that change over time. There-
fore, it is important to implement a robust control
system. In this section, we will consider the per-

formance of the Abbas tuning equations versus
the adaptive Smith Predictor when faced with a
changing plant. Two examples will be presented to
show the effectiveness of the adaptive Smith Pre-
dictor. Each example will model a typical indus-
trial chemical process as a second-order plus time
delay (SOPTD) transfer function. These examples
will be used to compare the performance of the
adaptive Smith Predictor to static Abbas tuning
for a time-varying plant. Recall that Abbas’
method was developed for a FOPTD plant; the
following examples, by being SOPTD, will
demonstrate the limitations of this technique when
applied to higher order plants.

4.1. Example 1: distillation column

The transfer function relating the viscosity, y(s),
and the reflux flow, u(s), for a high vacuum dis-
tillation column can be expressed as:

) _ 0577 0.57¢20s
Tu(s) (148657 73.9652 +17.25 4 1
(20)

where the time delay is equal to 20 s [10]. A step
response shows that the open-loop time constant
of this system is about 20 s. The system is not
dead-time dominant since the time constant and
time delay are the same. The Abbas tuning calcu-
lations for this system, using V'=20.1, give the loop
gain as K=1.14. The process gain is 0.57, so the
controller gain will be K.=2.0. The integral and
derivative terms are 11 = 30.0s and p = 6.67s.
We modified the plant by increasing the time
delay when the simulation time reached 500 s. The
setpoint was varied as a series of step functions.
The plant output with no change in the plant as
controlled by the adaptive Smith Predictor is
shown in Fig. 1. The overshoot is just under 30%,
the 2% settling time is 189 s, and the rise time is 24
s. The plant output with a 10% increase in the
dead time is shown in Fig. 2. With a 20% increase
in the dead time, the results are shown in Fig. 3. A
50% increase in dead time gave results as shown in
Fig. 4. Even with a 30% change in the plant, the
overshoot is under 50%. When the plant suddenly
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Fig. 2. Example | setpoint response, 10% change in time delay at 500 s.

changes by 50%, the controller still controls, but is
becoming quite oscillatory. For this example, the
adaptive Smith Predictor provides quite robust
performance in the face of a changing time delay.

Using the Abbas tuning parameters, the plant
output for a constant 20 s time delay is also shown
in Fig. 1. The percent overshoot is 41.19% with a
rise time of 13.8 s. The 2% settling time is 201 s.
The ringing and large overshoot are attributed to
the dependence of the Abbas tuning method on a
FOPTD model. The oscillation is caused by the
unmodeled second-order dynamics. Plant outputs
for increases in time delay of 10%, 20%, and 50%

are shown in Figs. 2—4, respectively. Note that the
overshoot and the oscillations are greater for the
Abbas technique even at the conditions used in
calculating the tuning parameters. This degraded
performance is attributed to the assumption of a
first order plant in the Abbas development. Beyond
a 10% change in the dead time, the overshoot is
greater than 50%, which would be undesirable for
most processes. Also, the increased oscillation of
the system would cause undesirable process upsets.

The adaptive Smith Predictor provides the best
control for this example. The controller reaches
good performance fairly quickly, but the system



C.W. Alexander, R.E. Trahan Jr.|ISA Transactions 40 (2001) 353-368

2
Abbas )
50/ " o 1
Input R ,[\ . A
and 1 7 - \'/"\,- Y
Output ! | i
. [} I
05 [ s | -
o H LY. NI :"/.N‘\.',":* .
A K
B l_
-0.5 . Y 5
Setpoint
-10 200 400 600 800 1000 1200 1400 1600 1800 2000
Time [seconds]
Fig. 3. Example 1 setpoint response, 20% change in time delay at 500 s.
15 TR - -
:/\': X
Input gk N
and : \/ (R
Output Y

Setpoint

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time [seconds]

Fig. 4. Example 1 setpoint response, 50% change in time delay at 500 s.
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must be able to handle the initial upset. This is
taken into account by initializing the parameter
estimates close to the correct values by pre-run-
ning the system identification. Abbas tuning is
disappointing because of the unmodeled second
order dynamics. When the gain is decreased, the
performance is much better. This would add to the
time to tune the controller but not as much as
finding a reasonable second order model to use for
parameter estimate initialization in the adaptive
controller.

Next, the effects of load disturbances on the
adaptive Smith Predictor controller for the dis-
tillation column were considered. A series of unit
steps were introduced into the load and then the
plant dead time is changed at a simulation time of
1000 s. The plant outputs and the load dis-
turbances are shown in Figs. 5-8 for time delay
changes of 0, 10, 20, and 50%, respectively. For all
four cases, the controller performance is similar.
The control is good with the maximum output
deviation about 50% of the load disturbance. The
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Fig. 6. Example 1 load response, 10% change in time delay at 500 s.

output settles back to zero with approximately
quarter amplitude damping.

The amplitude of the output excursion due to
the Abbas tuning is similar to that of the adaptive
controller, but the settling time is much longer.
The output oscillation is more noticeable even for
a static plant. There is additional oscillation as the
dead time grows more and more dominant, with
the ringing approaching an unacceptable amount
in Fig. 8. The Abbas-tuned controller is very sen-
sitive to dead time changes. The controller settings

may have to be detuned to get more robust per-
formance.

For a load disturbance, the adaptive Smith Pre-
dictor again gave superior performance over the
Abbas method. The difference in performance
between set point change and load disturbance is
found with the parameter initialization for the
adaptive Smith Predictor. The adaptive controller
seems to be relatively insensitive to parameter
initial values in the presence of load changes.
Thus, it is important to know whether a system
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Fig. 8. Example 1 load response, 50% change in time delay at 500 s.

will see mostly set point changes or load devia-
tions when selecting the proper control strategy.

4.2. Example 2. reactors in series

This example considers two continuous reactors
operated in series. The reaction takes place as
component A reacts irreversibly to produce com-
ponent B, the desired product. The parameters of
the model include the flows into and out of each
reactor and the concentrations in each reactor. It
is acceptable that the volume of each reactor be

different, but we have chosen to make them the
same. The temperature and the density will remain
constant across the system. The reaction is
assumed to be a simple first-order reaction that
takes place at a fixed reaction rate, k [23].

The transfer function relating the concentration
at the input of the first reactor to the concentra-
tion at the output of the second reactor is given
by

1
s+ (k+ D][s+ (k+ 1)

CA2 = [ ]CAO (21)
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where the time constant t;, i=1,2, is equal to the
volume divided by the flow rate for each reactor.
To make this a second-order plus time delay plant,
a 20 s analyzer delay was added as follows

67203‘

T8+ (k + Dl[tas + (kK + 1)]

Cpp= [ Ca0(23].  (22)

The decomposition of ethyl chlorocarbonate is
chosen as an example process. At a reactor tem-
perature of 600 K, the rate of reaction is
k=0.02308 s~!. This is a result of a frequency
factor of ®=9.2x10® s~! and an activation energy
of E=29.1x103cal/mol [24]. A constant volume of
100 gallons (378.5 1), or 13.36 ft3 (0.3785 m?) is
assumed for each reactor.

The effects of changing plant dynamics for the
series reactor example can be investigated by
changing the flow rate through the system to
simulate a change in production rate. First, a 10%
increase in the flow rates from 500 scfm (0.236
m?/s) to 550 scfm (0.260 m?/s) will be introduced
when the simulation time reaches 500 s. The plant
output for the adaptive Smith Predictor using a
closed-loop time constant of five seconds when the
flow is constant at 500 scfm (0.236 m>/s) is shown
in Fig. 9, and the plant output for a 10% increase
in flow at 500 s is shown in Fig. 10. There is basi-
cally no difference between the two plots. At a
flow change to 750 scfm (0.354 m?/s), the plant

yields results as seen in Figs. 11 and 12 shows a
flow change to 1000 scfm (0.472 m?/s). At 750
scfm (0.354 m?®/s), a 50% change in flow, there is
some overshoot and some oscillation that quickly
damps out. However, after three setpoint changes,
the adaptive controller has returned to an over-
damped response. Even at a flow change to 1000
scfm (0.472 m?/s), the plant output returns to a
smooth, overdamped curve following a large
overshoot with lots of ringing for a few set point
cycles.

The Abbas tuning for flows of 500 scfm (0.236
m’/s) and a time constant of 3.55 s yields con-
troller parameters of

K. =0.46 7= 13.55s o = 1.18s

for no overshoot, i.e. =0.0. At a constant flow
of 500 scfm (0.236 m®/s), the plant output is
shown in Fig. 9. The closed-loop time constant is
9.5 s and the settling time is about 71 s. For a 10,
50, and 100% increase in flow, the plant output is
shown in Figs. 10-12, respectively. There is addi-
tional oscillation, but overall there is little change
in the plant output. The controller is able to
maintain the overshoot at zero as specified in the
calculations. This system seems very robust with
respect to large flow changes. The only drawback
here is that the system will never adjust itself back
to the original performance. The Smith Predictor

1.2

Input

and 08

Output
0.6

0.4

0.2

-0.2 0

500 600

100 200 300 400

700 800 900 1000

Time [seconds]

Fig. 9. Example 2 setpoint response, constant flow.
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Fig. 10. Example 2 setpoint response, 10% flow increase at 500 seconds.
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Fig. 11. Example 2 setpoint response, 20% flow increase at 500 s.

provided a smoother output after adjusting itself.
However, since the Abbas tuning method requires
much less effort and maintenance, it has shown to
be an acceptable dead time compensation method.

From this example, we can see that if the system
is dead time dominant, the adaptive Smith Pre-
dictor still requires a lot of a priori information
about the system before starting the controller. A
good guess of the system parameters is needed to
keep the controller stable. This can be accom-
plished by running the system identification prior
to closing the loop. However, the performance is

excellent if the system is initialized correctly. By
comparison, a quick step test allowed us to get
good performance using the Abbas method. This
performance is not as smooth as the adaptive
Smith Predictor, but it required significantly less
effort to produce.

Next, a series of load disturbances were applied
to the system as controlled by the Abbas-tuned
controller and the adaptive Smith Predictor. The
effects of flow changes are studied in a similar
manner to that described above. The plant outputs
for the flow change are shown in Figs. 13—16. The



364 C.W. Alexander, R.E. Trahan Jr.|ISA Transactions 40 (2001) 353-368

performance of the adaptive Smith Predictor is
very good for all cases. There is little difference in
the plots except for a slight widening of the output
deviation as the dead time to time constant ratio
increases. The output deviates from steady state
by less than the load change amplitude and
returns to steady state very quickly.

The performance of the Abbas-tuned controller
with 7"=0.0, i.e. no overshoot, for these same flow
changes is shown in Figs. 13—16 as well. This sys-
tem also gives good controller performance. The
response is more erratic than the adaptive Smith

Predictor, especially as the dead time to time con-
stant ratio grows, but the output quickly returns
to steady state with no overshoot. The adaptive
Smith Predictor shows better performance for this
example than Abbas. However, the Abbas perfor-
mance is very good, only taking a slightly longer
time to settle to steady state. This performance
would probably be acceptable to plant personnel,
especially in light of the complexity of implement-
ing the adaptive controller.

Finally, note that these changes are probably
much more harsh than those seen in an actual

Input 3T
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Output 2

Abbas

0 200 400 600 800

1000 1200 1400 1600 1800 2000

Time [seconds]

Fig. 12. Example 2 setpoint response, 50% flow increase at 500 s.
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Fig. 13. Example 2 load response, constant flow.
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plant situation. Even for a drastic change in pro-
duction rate, the change would probably be intro-
duced as a ramp or as a series of small steps. This
would help the controller avoid the large upset
seen at the flow change when the process is con-
trolled by the adaptive Smith Predictor. In a real
world situation, the adaptive Smith Predictor
should be able to provide the smooth, over-
damped response most of the time with occasional
small upsets if the process change is larger than
expected.

The Abbas tuning demonstrates good controller
performance even for a large, sudden flow change.
For ramps or a series of small step changes, con-
trol will degrade as seen in Figs. 9—12, however,
the performance will still meet the control algo-
rithm specification with respect to overshoot. The
load disturbance response is comparable to that of
the adaptive controller. The use of Abbas tuning
would probably be preferred by most plant engi-
neers for this system, since it requires the least
implementation effort and the least long-term
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Fig. 14. Example 2 load response, 10% flow increase at 500 s.

0.8
0.6
Input

and 0.2
Output

0.2
-0.4
-0.6
-0.8

Abbas

1o 100 200 300 400

500 600 700 800 900 1000

Time [seconds]

Fig. 15. Example 2 load response, 20% flow increase at 500 s.
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Fig. 16. Example 2 load response, 50% flow increase at 500 s.

attention. The distributed control system or pro-
grammable logic controller for the plant will have
the standard PID controller as a standard feature.
If necessary, gain scheduling could be imple-
mented based on expected flow rates. An adaptive
Smith Predictor will require a significant amount
of programming as well as upkeep. Furthermore,
the a priori knowledge needed to properly initi-
alize the Smith Predictor may be a barrier to
implementation.

5. Conclusions

The tuning method developed by Abbas is an
improvement over traditional methods of PID
controller tuning. The ability to specify closed-
loop response performance offers a distinct
advantage over the quarter amplitude decay
methods of Zieger—Nichols and Cohen—Coon. The
Abbas tuning method can provide performance
that is more consistent over a wider range of dead
time to time constant ratios than the older meth-
ods. The performance of a system with order
greater than one suffers because of the unmodeled
dynamics of the plant. However, the controller
still provides a stable closed-loop system. Further
research may allow the Abbas tuning method to
be extended to include SOPTD systems similar
to the method introduced in [13]. Otherwise, a

technique could be developed to provide guide-
lines for detuning the controller settings provided
by Abbas in the presence of higher order system
response.

When the process to be controlled is known to
change or when manufacturing conditions fluc-
tuate frequently, it may be necessary to implement
an adaptive controller. However, these controllers
are much more complex than standard PID con-
trol. Therefore, one must be sure that an adaptive
controller is really necessary. Furthermore, the
adaptive Smith Predictor as shown in this paper
requires a priori knowledge of the system in order
to initialize the system to a reasonable estimate of
the plant. The system identification should be
allowed to run before the control is implemented,
but this adds another layer of complexity to the
system.

The adaptive Smith Predictor can outperform
the Abbas tuning on a standard PID controller
when a SOPTD plant has a varying time delay. As
the time delay increases, the Abbas tuning begins
to break down and the adaptive Smith Predictor is
shown to exhibit superior performance. However,
when the time constant varies while the dead time
remains fairly constant, the Abbas tuning actually
is superior in that its performance only degrades
slightly while keeping the system output within
specification. The adaptive Smith Predictor will be
appropriate only if a smooth, overdamped
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response is required over a wide operating range
of time delays. However, the system must be able
to tolerate output transients during sudden, large
changes in the process. Both methods demon-
strated acceptable control for load disturbances.
The adaptive controller showed some advantage
in performance, but the Abbas control was not
significantly worse.

The final answer is that there is no unique con-
trol method that is best for all processes. The tun-
ing method developed by Abbas has been shown to
be superior to more traditional tuning methods.
However, even when using the Abbas tuning, a
standard PID controller is not always the most
efficient way to control a process. Adaptive control
can be very effective in controlling a process but
carries a significant cost penalty in complexity and
time which must be weighed against the benefit.
Abbas tuning parameters must be updated from
time to time as conditions change and controller
performance degrades, but adaptive controllers
cannot simply be installed and forgotten either.
The controls engineer must be knowledgeable in
many types of control and should choose the sim-
plest method that will provide acceptable control.
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