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With the increased capability of today’s personal com-
puters (PC) and software packages, it often is advantageous
to formulate engineering problems in such a way as to take
full advantage of these resources. In this paper a new ap-
proach to recursive filter design is presented which takes
advantage of a popular spreadsheet program and a simple
formulation of an optimization problem. No code must be
written other than the formula definitions in a spreadsheet.
Explicit derivatives are not needed and full interaction with
the optimization process is possible, including graphical in-
formation. Results are given for an eighth-order filter and
these are compared to previously published designs. « 1995

Academic Press, Inc.

1. INTRODUCTION

There are many methods available for the design of
recursive digital filters. Some are based on the con-
version of continuous time filters to discrete time us-
ing approximation techniques; others are based on di-
rect design procedures. An excellent reference for
techniques which can be used to design recursive fil-
ters satisfying prescribed specifications is Ref. [1]. In
this book the author, Antoniou, provides various for-
mulas and tables which can be used to translate filter
specifications into filter designs. Also included is a
section on design of recursive filters using optimiza-
tion methods. Considerable interest in the applica-
tion of optimization to the design of recursive digital
filters has been shown over the past two decades [2,3].

With the tremendous improvements in optimization
techniques it is now possible to design digital filters
which have arbitrary amplitude or phase responses.

There are commercially available spreadsheet pro-
grams which have a built-in optimization capability.
In one, the optimization techniques are selectable; ei-
ther a quasi-Newton method or a conjugate-gradient
method can be chosen. Furthermore, constraints on
the optimization problem can be specified. All of these
capabilities are available without the explicit use of
derivatives. All that is necessary is the formulation of
a cost function, constraint functions, if any, and the
specification of variables. There are other commer-
cially available software packages which run on per-
sonal computers (PCs) which also include optimiza-
tion capabilities. These may also be used for the de-
sign of digital filters; the spreadsheet approach,
however, will be described here. In terms of design
time, the use of a commercially available software
package decreases the time normally used for writing
custom code. Since a spreadsheet program or some
other mathematical computation package is usually
available on PC work stations used by design engi-
neers it makes sense to pose a problem in such a way
to maximize the use of these standard tools.

In Section 2 of this paper the problem of recursive
digital filter design using optimization is presented. A
cost function is developed which is based on the for-
mulation in [1}. The results are a least squares ap-
proach and a minimax criterion. In Section 3 a brief
discussion of the existing methods used to solve the
optimization problems will be presented. In Section 4
a new method will be presented. The new method is
based on the work presented in [1] but by introducing
a modification to the cost function an improved crite-
rion is obtained. Results using this new formulation

1051-2004/95 $12.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.




are presented in Section 5. Conclusions and sugges-
tions for further work are presented in Section 6.

2. PROBLEM FORMULATION

The problem of recursive digital filter design is

posed as follows:
Given an arbitrary magnitude and/or phase response
as a function of frequency, find a stable rational func-
tion H(z) which most closely matches the desired re-
sponse.

The desired magnitude and phase responses are de-
fined by the particular specifications for the system to
be designed. For illustrative purposes in this paper
only the magnitude response will be used; the phase
response, however, can be added to the design crite-
rion. See [10] for a discussion of a technique for in-
cluding phase in the criterion. Let the desired magni-
tude response be defined as

Hd(‘-'-’) wE [le Qu]’ (1)

where [Q,, Q,] is the interval of frequencies of interest.
Now define an Nth order digital filter transfer func-
tion by
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where N = 21, and k,, a,, a,;, by, b1, L = 1, , I, are

the digital filter coefficients. The frequency response
of this transfer function is obtained by setting z = &7
in (2) to obtain
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where T is the sample period in seconds. The magni-
tude of the transfer function, defined as H,,(w), is ob-
tained by solving for the magnitude of the numerator
and denominator terms separately as
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where

Niw) = [1 + d; + a&; + 2a,{1 + ag)cos wT
+ 2ayco8 20T]  (5)

and

Di(w) = [1 + b;z), + b?l + 2b“(1 + bg,’)COS wT
+ 2bgicos 2w0T].  (6)

The magnitude of the transfer function in (4) can be
compared to the desired magnitude in (1) and an error
function can be defined as

e(w) = Hy(w) — Hylw). (7)

This error function can be evaluated at discrete fre-
quencies and the individual errors summed in some
manner to form an objective function for an optimi-
zation problem. A general form of a scalar objective
function for this problem can be formulated in terms
of an L, norm by defining

I3
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where {0 &, Q]| =1, ---L} is a set of discrete fre-
quencies. This set of mesh points must be sufficiently
dense to avoid spikes from occurring in the response
between the points. The weighting function W(w,) =
0 is chosen to emphasize certain frequencies. The
choice of p in (8) changes the type of optimization.
For p = 2 the problem becomes one of ordinary
weighted least-squares.

Let the maximum error over the set of mesh points
be defined by

€max — Max le(w1)| ;é 0 (9)
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Then the limit as p — o« gives
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Therefore, with p = co minimizing the objective func-
tion is a minimax problem.

In the problem statement above, the rational func-
tion H(z) which is to be found must also be stable. Of
course, this requirement is necessary in order to en-
sure a stable digital filter. There are two ways in
which stability of the resultant filter is ensured. The
first method is to design the filter without regarding
the stability issue. If the transfer function which re-
sults from the optimization procedure is unstable (i.e.,
poles outside the unit circle), then the unstable poles
are mapped into their reciprocals and the gain is ad-




justed to give the same DC filter gain. See Ref. [1]
for a discussion of this stabilization technique. One
disadvantage of this method is that phase distortion is
introduced if the unstable poles are replaced by their
reciprocals.

Another more direct approach to ensure stability is
to use constraints in the optimization procedure.
Since the denominator of H(z) consists of second-or-
der terms it is possible to constrain the roots of each
term to be inside the unit circle. Given a second-order
polynomial

b(Z) = 22 + b]Z + b(), (11)

the roots are inside the unit circle if the following
equations obtained using the Jury test are satisfied

[4]:
by <b,+1
_bl < b() + 1
'1<b()<1, (12)

These inequalities can be rewritten in standard ine-
quality constraint form

O0<by+1—b

O<b,+1+ b

0<b,+1

0<1-—b,. (13)

These constraints can be written for each second-or-
der denominator term and the resultant constrained
optimization problem is one in which the objective
function is minimized subject to these constraints.

3. EXISTING METHODS

In [1] Antoniou defines the design of a recursive
digital filter as a solution of the optimization problem

min V(x), (14)

X

where the objective function ¥V(x) is
¥(x)=E, (15)
forp = 2 or o, and

X = [aw, @, b()l,bn,-:-,bu,ku]T (16)

is the vector of unknown parameters to be optimally
chosen. (Antoniou does not include a weighting func-
tion in the definition of E,.) The optimization meth-
ods proposed by Antoniou are based on the popular
quasi-Newton algorithms [5]. In all of the algorithms
the derivative of the objective function must be com-
puted; all are iterative and line searches must be made
in each iteration.

In order to obtain a minimax solution Antoniou
proposes a basic Least pth algorithm in which succes-
sive optimization problems are solved beginning with
p = 2. Once a solution (actually a near solution) is
obtained, the value of p is multiplied by 2 and the
problem is solved again using the previous solution as
an initial value. In this manner as the value of p is
increased the minimax solution is approached [6].

Improved minimax algorithms are also described in
{1]. These improved algorithms are based on the work
of Charalambous [7,8] and use a modified objective
function. Minimax multipliers are introduced and
successive minimizations are performed with multi-
plier updating formulas used between each minimiza-
tion.

All of the algorithms described in [1] for the design
of recursive digital filters require significant coding
efforts if attempted from scratch. Published subrou-
tines such as those contained in [9] can be used, but
there is still a significant effort required for the main
program code. For an engineer, it is far better to use
existing easy-to-use commercial software packages
than to write custom code. The next section illus-
trates that this is possible for the design of recursive
digital filters.

4. DESCRIPTION OF NEW TECHNIQUE

In the field of analog filter design it is customary
to describe the gain over frequency ranges in units of
deciBels (dB). By using 20 times the logarithm of the
magnitude of the gain a large dynamic range can be
accommodated. It will be shown here that using the
error expressed in dB provides an improved objective
function.

The problem of matching a rational function to a
given frequency response in order to obtain a digital
filter is very similar to the problem of identifying a
system transfer function from a Bode plot for the sys-
tem. Recently Sidman et al. presented results in
which frequency response data were used to identify
continuous time system transfer functions using log-
arithmic data [10].

In order to apply the ideas in [10] to the problem of
digital filter design, the error function must be rede-




fined. Let the error between the computed and desired
responses be defined by

e(w) = 20 log o H .(w) — 20 logoHy(w). (17)

Note that this error criterion is equivalent to finding
the ratio of the two gains, i.e.,

e_(w) = 20 10g1()%((‘ui)) . (18)
d

The use of a ratio provides an advantage when the
desired gain Hy(w) is very small. The log of a ratio of
two small numbers can be minimized much more eas-
ily than the absolute value of the difference between
the numbers. This advantage is demonstrated in [10]}
where rational functions are matched to frequency re-
sponse data over a wide dynamic range.
Using (4) in (17) yields

. T Nilw)'?
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i=1

— 20 logioHy(w), (19)

and this can be further simplified to

I
elw) = 2 [10 logoN(w) — 10 log,oDi(w)]
i=1
— 20 logiyHy(w). (20)

Note that each term being summed in (20) has units
of dB. The objective function is a weighted sum of all
of the errors at the discrete frequencies. Using (20) to
evaluate e(w) at the mesh points of the frequency
range of interest and substituting into (8) yields

L 1
E,= [2 W(w)| 2 [10 logieNd{w;) — 10 logyeDiw))]

=1 i=1

— 20 logyoHa(w) |1V2.  (21)

This is the objective function which can easily be en-
tered into a spreadsheet and optimized.

5. COMPUTATIONAL RESULTS

The results obtained using the algorithm described
above will be presented via an example taken from [1]
(Example 14.4). The problem is to design an eighth
order digital filter with a sample rate of w, = 2 rad/s
and a desired magnitude frequency response as shown

in Figs. 1a and 1b. This response was actually speci-
fied at 21 evenly spaced discrete points beginning at
0.00 rad/s and ending at 1.00 rad/s.

The objective function for the design, which is de-
fined by (21), can be entered into a spreadsheet with
the columns containing each term evaluated at a sin-
gle frequency. Graphically, the spreadsheet can be il-
lustrated as

w a 81 g B, %] Bs oy B4 z M E

0:0 (Y'n ﬁ.“ 0.21 B2 0.:11 .B'u O’:H .3:11 :_l M, E,
Bu || M| E

z

The individual terms in the array represent the for-
mulas entered in the spreadsheet. The first column is
the frequency in rad/s incremented in 0.05 rad/s
steps. The o, and 8, k=1, ..., 4 columns represent
the zero and pole terms, respectively, and the column
entries are defined as

;= 10 loge[1 + af; + a¥; + 2a;,(1 + ag)cos T

+ 2ag,cos 2w, T]  (22)
By = —10 logio[1 + b + b3, + 2b,,(1 + by)cos w, T

+ 2bg,cos 2w,TT.  (23)

The Z, terms are given by

4
Z= 2 (o + By) + 20 logioky, (24)

=1
and for p = 2 the weighted error terms, E, are
E = W(w)(Z,— M), (25)

where M, is the desired magnitude in dB of the filter
gain at the /th frequency. The weighting function was
determined experimentally. The function W(w;,) =
w;® (with w, = 0.1 substituted for w; = 0 to avoid di-
viding by zero) worked well to ensure a good fit at
lower frequencies. Finally, the objective function
(sum of all individual errors) is given by

A

t

L
L= z Ely (26)
=1

where L = 21. The square root of the sum of errors,
which is required in (8), is not taken since minimizing
the square is equivalent to minimizing the square
root. The objective function is defined as a single cell
for the spreadsheet optimization procedure.

It should be emphasized that the weighting func-
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FIG. 1. Desired magnitude response for eighth-order digital filter and filter response for (a) Least-Squares design using absolute error,

e(w), and (b) least-squares design using dB error, e(w).

tion can be formulated in many different ways. For
example, in experimenting with various weighting
functions, one that was implemented was simply the
multiplication of the midband frequency terms by 10.
Thus, the optimization procedure concentrated more
heavily on decreasing the midband errors. The power

TABLE 1
Initial Values Used for Example Digital Filter Design

ag 1.00 by 0.75
ay 1.00 b, 1.00
ay; 1.00 by 0.75
a, 1.00 by 1.00
Qo3 1.00 by 0.75
a3 -1.00 bia -1.00
[« T 1.00 bos 0.75
Qg —1.00 by —1.00
ko 1.00

of the spreadsheet approach is that it is very simple to
modify the error terms, run the optimization proce-
dure, and look at the graphs of the results, all with the
touch of a few keys or clicks of a mouse.

Stability of the resultant transfer function is en-
sured if each second-order denominator term is con-
strained to have roots inside the unit circle as dis-
cussed above. Thus, the constraints

TABLE 2

Computation Times and Final Objective Function Values
for Least-Squares

Case Objective function e mayx,; |e(w;)] Run time (s)
(i) Z =3k e(w)? 0.097828  0.062803 200+
(i) T =3 w0 e(w)’ 0176195  0.047066 300+
(i) T ==f; élw)? 0.955443  0.069838 200+
(iv) 2 =32f, w0 ™e(w)? 1.615664  0.056329 400+




0 0.2 04

0.6

Unweighted

Weighted

Frequency (rad/sec)

FIG. 2. Error response for cases (i) and (ii) of least-squares design (absolute error used).

O < b(),‘ + 1 - b]l
0<b(),‘+1+b],‘
0< b(),‘ +1
0 < 1 - b(),‘
are used, where i = 1, 2, .. ., 4. Each constraint equa-

tion is contained in a single cell in the spreadsheet.
The parameters to be optimized and the initial val-
ues are shown in Table 1; the parameters are simply
defined as a block in the spreadsheet. The initial val-
ues are the same as those given in [1] (Example 14.4).
As pointed out in [1] the final solution to any optimi-
zation problem is dependent on the choice of an initial
solution. If the initial values are close to the optimal
solution then the amount of computation may be low

Error (dB)

0.2

0 0.2

06

and the accuracy high. Generally, a good initial guess
can be obtained from some nonoptimal procedure
which results in a filter having the same general shape
as the desired filter.

Using the initial values given in Table 1 four
different least squares optimizations were attempted
using the quasi-Newton algorithm contained in one
available spreadsheet program. The four cases are

(i) error = e(w,;) (absolute error) — no weighting,

(ii) error = e(w; (absolute error) — weighting,
Wlw) = w o8

(ii1) error = e(w;) (dB error) — no weighting,

(iv) error = e(w;) (dB error) — weighting, W(w,) =

0.8
wy .

The results for the four cases are shown in Table 2.
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FIG. 3. Error response for cases (iii) and (iv) of least-squares design (error in dB used).




TABLE 3

Computation Times and Final Objective Function Values
for Least pth Method

~
-

p €max Run time (s)
Unweighted
p=2 0.961251 0.070555 100+
p=4 0.682587 0.057973 100+
p—8 0.582573 0.057364 100+
p=16 0.533772 0.058009 100+
p =32 0.509454 0.058267 100+
p =64 0.498751 0.058547 <100
p =128 0.490013 0.058298 100+
Weighted Wi(w) = w, "*
p-2 3.070302 0.090781 100+
p=4 0.800280 0.042441 300+
p=8 0.541371 0.039492 <100
p=16 0.447329 0.039834 <100
p=32 0.403249 0.040080 <100
p =64 0.386108 0.040097 <100
p =128 0.379032 0.040096 <100

The column headed by = is the square root of the
final value of the objective function. The next column
contains the maximum absolute error in the gain, and
the last column contains the run times on an 80486
DX2/50 computer with 16 megabytes of RAM. The
optimization program was run in increments of 100 s.
The procedure was automatically terminated when
the objective function began changing too slowly. The
plus sign on the run times in Table 2 signifies that the
last full 100 s increment of run time was not com-
pleted.

The frequency responses for the resultant design
from cases (ii) and (iv) are shown in Figs. 1a and 1b,
respectively. Note that the absolute error in case (ii)
is very small but the frequency response is off by over
6 dB at the notch. This error is attributable to the fact
that the error at the notch frequency, though small in
absolute value, is large relative to the small desired
gain. In case (iv) the error in dB is used and the resul-
tant design provides a very close match across the
spectrum, including the notch frequency.

The errors as a function of frequency for cases (i)
and (ii) are shown in Fig. 2. Note that the error is
shown in dB. Case (i), since it does not include a
weighting function, does not match the gain as well at
low frequencies. By using the weighting function to
emphasize the low frequencies in case (ii) a better
match is made at these frequencies at the expense of
a larger error at the notch frequency. The errors for
cases (iii) and (iv) are shown in Fig. 3. The errors are
quite small in both cases, including the errors at the
notch frequency. The objective function with the

weighting function gives a closer match at the lower
frequencies.

The least pth objective function was implemented
in a spreadsheet similar to that of the least-squares
design described above. The objective function was
defined as

R L A WNPTVP
S = b [z W(wl)("’_(“‘)) ] , 27)
=1 emux
where
émax = max |e_(wl) l . (28)
lel= L
The results with p = 2, 4, 8, ..., 128 are shown in

Table 3. Two runs were made, one with W(w;) =1 and
one with W(w) = ,;"*. The frequency responses of
the final designs for the unweighted and weighted
cases are shown in Figs. 4a and 4b, respectively. The
actual errors are shown in Fig. 5. Note that the Least
pth design provides a lower maximum error at the
expense of higher errors at other frequencies. The
weighted objective function provided a maximum er-
ror of only 0.37 dB but the error is higher at high fre-
quencies compared to the least-squares design.

6. CONCLUSIONS

The design of recursive filters can be greatly simpli-
fied by using a standard spreadsheet program. By us-
ing a built in optimization capability in a spreadsheet
program the optimal design of a stable digital filter
can be accomplished without writing any custom
code. Since the program is fully interactive, a designer
can monitor the progress of the optimization by ex-
amining the response curves during the optimization
runs.

It has been demonstrated that a weighted least-
squares objective function with the logarithmic error
in dB provides a very good design of a recursive digital
filter. The inclusion of a weighting function allows the
minimization of error in any range of frequencies. The
use of a logarithmic error function which is the
difference in gain in dB allows a better match of gains
at frequencies where the desired gain is small.

The Least pth design method can be easily imple-
mented in a spreadsheet form. As demonstrated via
the example above, the Least pth design will give a
minimax solution to the design problem. The penalty
incurred is that minimizing the error at one frequency
can increase the error at another. A weighting func-
tion can help to distribute the errors as desired.

The techniques described here can be easily ex-
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tended to system identification. Given a frequency re-
sponse for a discrete time sampled data system it is
possible to use the weighted least-squares or least pth
methods to identify the system transfer function. The
optimization procedure can be implemented via a
spreadsheet in the same manner as the digital filter
design method described above.

Another interesting application for this technique
is in the design of recursive delay equalizers. It is pos-
sible to define a criterion for the performance of a dig-
ital equalizer, which is used to equalize the phase dis-
tortion of a digital filter. This criterion can be opti-
mized with respect to the parameters in the equalizer
transfer function. Further work will be performed on
this problem.
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