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Time-frequency transform techniques for seabed and buried
target classification

Madalina Barbua, Edit Kaminskya and Russell E. Trahan, Jr.a

aUniversity of New Orleans, 2000 Lakeshore Dr., New Orleans, USA;

ABSTRACT

An approach for processing sonar signals with the ultimate goal of ocean bottom sediment classification and
underwater buried target classification is presented in this paper. Work reported for sediment classification is
based on sonar data collected by one of the AN/AQS-20’s sonars. Synthetic data, simulating data acquired by
parametric sonar, is employed for target classification. The technique is based on the Fractional Fourier Transform
(FrFT), which is better suited for sonar applications because FrFT uses linear chirps as basis functions. In the
first stage of the algorithm, FrFT requires finding the optimum order of the transform that can be estimated based
on the properties of the transmitted signal. Then, the magnitude of the Fractional Fourier transform for optimal
order applied to the backscattered signal is computed in order to approximate the magnitude of the bottom
impulse response. Joint time-frequency representations of the signal offer the possibility to determine the time-
frequency configuration of the signal as its characteristic features for classification purposes. The classification
is based on singular value decomposition of the time-frequency distributions applied to the impulse response.
A set of the largest singular values provides the discriminant features in a reduced dimensional space. Various
discriminant functions are employed and the performance of the classifiers is evaluated. Of particular interest
for underwater under-sediment classification applications are long targets such as cables of various diameters,
which need to be identified as different from other strong reflectors or point targets. Synthetic test data are
used to exemplify and evaluate the proposed technique for target classification. The synthetic data simulates
the impulse response of cylindrical targets buried in the seafloor sediments. Results are presented that illustrate
the processing procedure. An important characteristic of this method is that good classification accuracy of an
unknown target is achieved having only the response of a known target in the free field. The algorithm shows an
accurate way to classify buried objects under various scenarios, with high probability of correct classification.

Keywords: Time-frequency transform, sediment classification, buried target classification

1. INTRODUCTION

The problem of pattern classification has been addressed in many contexts and different disciplines. Among
the most complex and challenging pattern recognition problems are sediment classification and underwater and
under-sediment target classification.

The underwater classification problem involves finding a classification algorithm that improves the classifica-
tion performance over that of standard algorithms. There are many techniques employed to solve this problem
among which pattern recognition ones play an important role. The goal of pattern recognition is to build classi-
fiers that automatically assign measurements to classes. The basis of these techniques is to represent the signal
in a favorable space by one or more projection methods; feature vectors are then obtained in this space, usually
followed by dimensionality reduction methods. The next step is to use a classification method for determining
the class that the signal belongs to; this can be either supervised classification or unsupervised classification
(i.e. clustering), depending on the nature of the data. In supervised classification, the given labeled patterns
(training data) are used to learn the descriptors of classes which in turn are used to label new patterns. In the
case of clustering, the problem is to group a given collection of unlabeled patterns into meaningful clusters. In a
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sense, labels are associated with clusters also, but these category labels are data driven. The classification can
be carried out in different ways, depending on the application, the nature of the signal and the final objective.

In recent years, interest in and use of time-frequency tools has increased and become more suitable for sonar
and radar applications,1,2 and3 . Major research directions include the use of time-frequency analysis for target
and pattern recognition, noise reduction, beamforming, and optical processing. In this paper a novel technique
is proposed that allows efficient determination of seafloor bottom characteristics as well as underwater buried
target classification. The new approach is based on time-frequency techniques that give a better representation
of the signal that leads to a good discrimination of the patterns.The method introduced in this work employs
the Fractional Fourier Transform (FrFT)4 in order to compute the impulse response of the seafloor. The FrFT
is better suited for chirp sonar applications because it uses linear chirps as basis functions. Singular value
decomposition of different distributions (e.g. Wigner, Choi-Williams5) applied to the impulse response is then
performed. In this way, discriminant features for classification are obtained due to the fact that the singular
value spectrum encodes the most relevant features of the signal. The features thus obtained are mapped in
a reduced dimensional space, where various classification approaches are considered and their performance are
compared.

In this paper we begin by presenting the essential concepts and definitions related to the Fractional Fourier
transform, time frequency distribution, singular value decomposition and acoustic scattering model for elastic
cylinders. The overview is followed by a description of the proposed method and the applications of the time-
frequency transform technique with emphasis on sediment classification using sonar data and buried target
classification for simulated data. The experimental results are shown and an evaluation of them is carried out
to present the performance of the proposed technique. The last section of the paper gives a summary of the
presented work, conclusions, future work, and recommendations.

2. THEORETICAL ASPECTS

2.1. Fractional Fourier Transform

The Fractional Fourier Transform (FrFT) is a generalization of the Fourier Transform and provides an important
tool in time-frequency domain theory for the analysis and synthesis of linear chirp signals. The traditional Fourier
transform decomposes a signal by sinusoids whereas the Fractional Fourier transform corresponds to expressing
the signal in terms of an orthonormal basis formed by chirps. Since the FrFT uses linear chirps as the basis
function, this approach is better suited for chirp sonar applications.

There are several ways to define the FrFT; the most direct and formal one is given4 :

fα(u) =
∫ ∞

−∞
Ka(u, u′)f(u′)du′ (1)

where
α =

aπ

2
(2)

Kα(u, u′) = Aα exp[iπ(cot α · u2 − 2 csc α · u · u′ + cot α · u′2)] (3)

Aα =
√

1 − i cot α (4)

when a �= 2k,

Kα(u, u′) = δ(u − u′) (5)

when a = 4k, and

Kα(u, u′) = δ(u + u′) (6)
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when a = 4k + 2, where k is a integer and Aαis a constant term and the square root is defined such that the
argument of the result lies in the interval (−π

2 , π
2 ].

Due to periodic properties, the a range can be restricted to (−2, 2] or [0, 4). The Fractional Fourier transform
operator, Fa, satisfies important properties such as linearity, index additivity, commutativity, and associativity.
In the operator notation, these identities follow4 : F 0 = I;F 1 = F ;F 2 = P ;F 3 = FP = PF ;F 4 = F o = I; and
F 4k+a = F 4k′+a, where I is an identity operator, P is a parity operator, and k and k′ are arbitrary integers.
According to the above definition, the zero-order transform of a function is the same as the function itself f(u),
the first order transform is the Fourier transform of f(u), and the 2nd order transform is equal to f(−u).

The definition can be understood as a multiplication by a chirp, followed by the Fourier transformation,
followed by another chirp multiplication and finally a complex scaling.

2.2. Time-Frequency Analysis

Time-frequency methods are powerful tools for studying variations in spectral components. The spectrum’s time
dependency of the return signal could be a strong indicator of the seafloor’s acoustic signature.

The generalized time-frequency representation can be expressed in term of the kernel ϕ(θ, τ), which determines
the properties of the distribution6 :

C(t,�) =
1

4π2

∫ ∫ ∫
f∗(u − τ/2)f(u + τ/2)ϕ(θ, τ)e−jθt−jτ�+juθ

dudτdθ (7)

The Wigner distribution can be derived from the generalized time-frequency representation for the value of
the kernel ϕ(θ, τ) = 1:

W (t,�) =
1
2π

∫
f∗(t − τ/2)f(t + τ/2)e−jτ�dτ (8)

The Wigner distribution function is a time-frequency analysis tool that can be used to illustrate the time-
frequency properties of a signal, and it can be interpreted as a function that indicates the distribution of the
signal energy over the time-frequency space. The Wigner distribution is symmetric with respect to the time-
frequency domains, it is always real but not always positive. The Wigner distribution exhibits advantages over
the spectrogram (short-time Fourier transform): the conditional averages are exactly the instantaneous frequency
and the group delay, whereas the spectrogram fails to achieve this result, no matter what window is chosen. The
Wigner distribution is not a linear transformation, a fact that complicates its use for time-frequency filtering.

One disadvantage of the Wigner distribution is that it sometimes indicates intensity in the regions where one
would expect zero values. These effects are due to cross terms and can be minimized by choosing a kernel that
has the form ϕ(θ, τ) = e−θ2τ2/σ, and in this case the distribution becomes the Choi-Williams distribution:

C(t,�) =
1

4π3/2

∫ ∫
1√
τ2/σ

f∗(u − τ/2)f(u + τ/2)e−σ(u−t)2/τ2−jτ�dudτ (9)

Choosing this kernel, the marginals are satisfied and the distribution is real. In addition, if the σ parameter
has a large value, the Choi-Williams distribution approaches the Wigner distribution, since the kernel approaches
one. For small σ values, it satisfies the reduced interference criterion.
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2.3. Singular Value Decomposition

A decomposition of joint time-frequency signal representation using the techniques of linear algebra, called
singular value decomposition determines a qualitative signal analysis tool. Singular value decomposition (SVD)
is an important factorization of a rectangular matrix with several applications in signal processing and statistics.
Singular value decomposition provides an acceptable approximation with a minimum number of expansion terms.
The set of representations of singular values is called singular value spectrum of the signal, which has a high data
reduction potential. It encodes the following signal features: time-bandwidth product, frequency versus time
dependence, number of signal components and their spacing. The SVD spectrum is invariant to shifts of the
signal in time and frequency and is well suited for pattern recognition and signal detection classification tasks6 .

The concept of decomposing a Wigner distribution in this manner was first presented by Marinovich and
Eichman7 . One motivation for such decomposition is noise reduction because when keeping only the first few
terms most of the noise is lost; the other motivation for this decomposition is for the purpose of classification5 .
The basic idea in the latter case is that singular values contain a unique characterization of the time-frequency
structure of a distribution and may be used for classification.

The singular value decomposition of a matrix A is given by:

A = UDV T =
N∑

i=1

σiuiv
T
i , (10)

‖A‖2
F =

N∑
i=1

σ2
i (11)

where superscript T denotes transpose, D = diag(σ1, σ2, ..., σN ) with singular values σ1 ≥ σ2 ≥ . . . ≥ σN , U
and V are matrices that contain singular vectors, and ‖A‖F is the Frobenius norm matrix.

Permutations of the rows (columns) or unitary transformation of A lead to similarity transformations of
AAT and AT A. The singular values are invariant under this transformation and also invariant to time and/or
frequency shifts in the signal. The number of non-zero spectrum coefficients equals the time-bandwidth product
of the signal. Because singular values of the time-frequency distribution encode certain invariant features of the
signal, the set of singular values can be considered as the feature vectors that describe the signal, and used for
classification purposes.

2.4. Acoustic Scattering Model

The analysis presented in this paper is based on the acoustic scattering model for elastic cylinder presented in8 .
In order to estimate the scattered field due to a cylinder of finite length, the volume flow per unit length of the
scattered field of an infinitely long cylinder is integrated over a finite distance. Many scatterers posses elastic
properties, so conversion of compressional waves into shear waves has to be taken into account. The assumption
made for the infinite cylinder is that there is no absorption, dispersion, or nonlinearity in the cylinder or the
surrounding medium8 . The scattering from ends of the cylinder is ignored, and the receiver-target separation
must be great enough to be in the first Fresnel zone (i.e, L << 2

√
rλ, where L is the length of the cylinder or

of the insonified ”spot” of a longer cylinder, λ is the acoustic wavelength and r is the range from the axis of the
cylinder to the receiver or field point). Stanton8 shows that taking into account arbitrary transmitter direction,
receiver position and cylinder orientation, and assuming that r >> L, the expression of the scattered pressure
is given by (12):

Pscatter(k) = −P0
eikr

r

(
L

π

)
sin(∆)

∆

∞∑
m=0

εm sin (ηm)e−iηm cos(mφ) (12)

where k is the acoustic wavenumber; Po is the amplitude of the incident plane wave; r is the source-target
separation; ∆ = 1

2kL(−→ri −−→rr ) ·−→rc , −→rr the unit direction of receiver, −→ri the unit direction of incident plane wave,
−→rc the unit direction of cylinder axis; εm is Neumann’s number: ε0 = 1, εm>0 = 2; ηm is scattering phase angle;
and φ is the azimuth angle of the arbitrarily oriented cylinder. In equation (12), sin(∆)

∆ represents the beam
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pattern. If it is assumed to be Gaussian, the effective length insonified is given by L̂ =
√

2πσe−s0/2σ2
where s0

is the distance from the maximum response on the bottom to the closest point of approach of the cylinder. The
following considerations have to be incorporated in the model: spherical spreading by replacing Po by P1/r, and
the bottom effects. Assuming a flat bottom comprising a homogeneous lossy half-space with sound speed cs and
density ρs, (cw is sound speed in water and ρw is density in water) the pressure is reduced by TwsTswe−2αszs .
Here, Tws = 2ρscs/(ρwcw + ρscs) is the normal incidence plane wave transmission coefficient from water to
sediment and Tsw = 2ρwcw/(ρwcw + ρscs) is the normal incidence plane wave transmission coefficient from
sediment to water; αs is the attenuation coefficient in sediment, and zs is depth of the cylinder below surface.
The scattered pressure becomes:

Pscatter(k) = −P1TwsTsw
ei(kwrw+ksrs(1+iδs))

(rw + rs)2

(
L̂

π

)√
2πσe−s0/22

∞∑
m=0

εm sin (ηm)e−iηm cos (mφ) (13)

where kw and ks are the wavenumbers in the water and sediment, respectively, rw and rs define the path lengths
in water and in the sediment, and δs = αs/ks. The solution is for continuous wave signals of infinite duration.
For a band-limited, finite duration pulse, a time series can be created from Fourier synthesis of solutions over a
discrete range of wavenumbers kn, n = 0, 1, ..., N . The impulse response for the jth sample of the time series is
given by:

hscatter(tj) =
2πfs

N2cs

n=nmax∑
n=nmin

Pscatter(kn)e2πi(j−1)(n−1) (14)

where nmin and nmax are determined from the upper and lower frequency band.

3. TIME-FREQUENCY TRANSFORM TECHNIQUE

Our proposed technique for sediment and buried target classification is based on the Fractional Fourier Transform
in order to determine the impulse response. The signals that need to be classified are represented in time frequency
space and then projected into a favorable space that allows feature extraction for supervised classification. The
acoustic data are discriminated into classes via a supervised classification, based on their most relevant features.
Our technique efficiently classifies sediment types or buried targets using the acoustic backscattered signal.

The following steps are performed in the proposed technique9 and illustrated in Figure 1:

1) Compute the impulse response using the FrFT for each beam

2) Determine the time-frequency distribution of the impulse response (for each beam)

3) Compute the SVD of the time-frequency distribution

4) Capture the first few SV’s (for each beam) as features

5) Perform supervised classification using the selected features in the new reduced dimensional space.

The FrFt which produces the most compact support for a given linear chirp is defined as the optimal fractional
Fourier transform of that signal10 .

The optimum order of the transform can be estimated based on the properties of the chirp signal: the rate
of change, sampling rate fs, and the length of the data segment N11 :

a =
2
π

tan−1

(
f2

s /N

2λ

)
(15)

The bottom impulse response is given by the magnitude of the Fractional Fourier transform for optimal order
applied to the bottom return signal12 :

|h(t)| ≈ |fa| (16)
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Acoustic Impulse response
signal using FRFT

Tune-frequency
Representation

Singu1a Value
Decomposirion

Feamre Extraction Classification

Figure 1. Block diagram of the proposed technique.

The classification procedure has been implemented based on the singular value decomposition of the time-
frequency distribution of the obtained impulse response corresponding to each beam and each sediment class.
Because feature analysis involves dimensionality reduction, we consider the first two singular values for sediment
classification and the first three singular values for target classification from the SVD spectrum as relevant
features.

4. EXPERIMENTAL RESULTS

4.1. Sediment Classification

In this chapter, the authors present experimental results using sonar data collected in a field trial, and processed
using the proposed technique introduced. The data were acquired by Volume Search Sonar (VSS), one of the
AN/AQS-20’s sonars during a mission in the Gulf of Mexico. Two sediment types were present and therefore
considered for classification: mud and sand. The data set sizes are presented in Table 1. The first four data sets
include data extracted from the response of the seabottom sediments corresponding to nadir beams only, and the
last three data sets contain data from ten central beams per ping, five beams fore and five beams aft. In all data
sets equal size subsets of mud and sand data are considered. In addition, the testing data sets are chosen from
slightly different geographical locations than the training data sets. Two methods are employed to compute the
impulse response of the sediment: the standard deconvolution method, implemented in the frequency domain
and the Fractional Fourier Transform method. The impulse response is then represented in the time-frequency
domain using the Wigner distribution and the Choi-Williams distribution. The singular value decomposition of
these distributions are computed next. In this way, important discriminant features for classification are obtained
because the singular value spectrum encodes the characteristic features of the signal. The features thus obtained
are mapped in a reduced dimensional space, by discarding all except the first and second singular values. Three
classification approaches (linear classifier, quadratic classifier and Mahalanobis classifier) are then applied to the
resulting features, and their performances compared.

In this section, the authors discuss first the results obtained only for nadir sets (sets 1 through 4) and then
for central beam sets (sets 5 through 7). The results are consistent for nadir sets and for central beam sets,
respectively, and can be summarized as follows.
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Table 1. Data sets size for sediment classification.

Data sets Training set Testing set

Set 1 60 nadir beams 22 nadir beams

Set 2 60 nadir beams 30 nadir beams

Set 3 60 nadir beams 40 nadir beams

Set 4 40 nadir beams 40 nadir beams

Set 5 300 central beams 200 central beams

Set 6 260 central beams 102 central beams

Set 7 260 central beams 142 central beams

In sets 1 through 4, only nadir beams (fore and aft) are used. Applying the linear discriminant function,
the standard deconvolution performs better than the FrFT (by almost 5%) when the Wigner distribution is
employed as shown in Tables 2, 3, 4 and 5. When the Choi-Williams distribution is used, both methods (standard
deconvolution and FrFT) achieve on average, almost the same accuracy for linear discriminants. Further, when
the quadratic discriminant function is used for classification based on the Wigner distribution, the FrFT method
gives a better accuracy than the standard deconvolution method by about 7% as illustrated in Tables 2, 3, 4 and
5. Using the Choi-Williams distribution, the standard deconvolution method performed the best for quadratic
discriminants, with the highest accuracy of 90%, also shown in Table 2. When the Mahalanobis discriminant
function is used, the FrFT method leads if the Wigner distribution is used, as illustrated in Tables 2, 3, 4 and 5,
and gives the best overall performance of 100% accuracy (Table 2). For the last discriminant function discussed,
the FrFT method gives similar (as shown in Table 2) or better classification results (Tables 3, 4 and 5) than the
standard deconvolution method when the Choi-Williams distribution is employed.

Table 2. Classification results for data set 1 (sediment classification).

Accuracy
Discriminant Function Standard deconvolution method FrFT method

Wigner Choi-Williams Wigner Choi-Williams
Linear 86% 86% 81% 86%
Quadratic 77% 90% 86 % 86 %
Mahalanobis 86% 95% 100 % 95%

Table 3. Classification results for data set 2 (sediment classification).

Accuracy
Discriminant Function Standard deconvolution method FrFT method

Wigner Choi-Williams Wigner Choi-Williams
Linear 83% 83% 80 % 83 %
Quadratic 76% 86 % 83 % 83 %
Mahalanobis 80% 86 % 93% 90%

The best combination, that gives the highest accuracy, for nadir data, using only two singular values is the
FrFT/ Wigner/ Mahalanobis.

The data sets 5 through 7 consist of 10 central beams per ping. The training and testing data set sizes are
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Table 4. Classification results for data set 3 (sediment classification).

Accuracy
Discriminant Function Standard deconvolution method FrFT method

Wigner Choi-Williams Wigner Choi-Williams
Linear 82% 82% 77% 82%
Quadratic 75% 85% 82% 85%
Mahalanobis 80% 90% 95% 92 %

Table 5. Classification results for data set 4 (sediment classification).

Accuracy
Discriminant Function Standard deconvolution method FrFT method

Wigner Choi-Williams Wigner Choi-Williams
Linear 82% 72 % 77% 82%
Quadratic 75% 85% 82% 82%
Mahalanobis 82% 87% 95% 92 %

shown in Table 1. The standard deconvolution method performs better than the FrFT method (for both Wigner
and Choi Williams distributions) for the linear discriminant function as illustrated in Tables 6, 7 and 8. The
highest accuracy achieved is 70%, on average 4% higher than that obtained with the FrFT method (Table 7 ).
When using the quadratic discriminant function, the FrFT provides the best accuracy for both cases (Wigner
and Choi-Williams) as presented in Tables 6,7 and 8. The FrFT method shows the best performance when the
Mahalanobis discriminant function is employed for classification based on the Wigner and the Choi-Williams
distributions (Tables 6,7 and 8). The highest accuracy of 81% is obtained for data set 6, when the FrFT, the
Wigner distribution and Mahalanobis discriminant functions are used.

The author recommendation for sediment classification when using two singular values is a combination of
the FrFT/Wigner/ Mahalanobis, when central beams are used.

Table 6. Classification results for data set 5 (sediment classification).

Accuracy
Discriminant Function Standard deconvolution method FrFT method

Wigner Choi-Williams Wigner Choi-Williams
Linear 70% 69% 68% 66%
Quadratic 68% 73% 72% 75%
Mahalanobis 76% 74% 79% 79%

The authors recommend the following combination in order to obtain a high accuracy sediment classification
(of about 100%): FrFT/ Wigner/Mahalanobis discriminant, using nadir beams only and two singular values as
features. However, the same combination can also be used for central beams and a classification accuracy of
around 80% can be achieved.

4.2. Target Classification

The proposed technique is based on a pattern recognition approach and includes a representation of the target
impulse response in the time-frequency domain. The singular value decomposition of the Wigner distribution
as well as of the Choi-Williams distribution of the impulse response is next applied. This way, the discriminant
features for classification are achieved due to the fact that the singular value spectrum encodes the relevant
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Table 7. Classification results for data set 6 (sediment classification).

Accuracy
Discriminant Function Standard deconvolution method FrFT method

Wigner Choi-Williams Wigner Choi-Williams
Linear 70 % 70% 68% 66%
Quadratic 68% 73% 74% 76%
Mahalanobis 75% 76% 81% 79%

Table 8. Classification results for data set 7 (sediment classification).

Accuracy
Discriminant Function Standard deconvolution method FrFT method

Wigner Choi-Williams Wigner Choi-Williams
Linear 68% 68% 66% 64%
Quadratic 66% 71% 71% 73%
Mahalanobis 74% 75% 78% 76%

features of the signal. These features are mapped in a reduced (3D) dimensional space. Three types of dis-
criminant functions, namely linear, quadratic and Mahalanobis, are used. Various experiments are employed for
investigating the performance of the proposed target classification method. The shape of the targets is assumed
to be cylindrical. In our simulation we used seven target radii: ra1 = 1.25 cm, ra2 = 1.5 cm, ra3 = 1.8 cm,
ra4 = 2 cm, ra5 = 2.3 cm, ra6 = 2.7 cm and ra7 = 3 cm which are the seven classes, class 1 through class 7.
The following parameters were initially set: the sound velocity in water cw = 1500 m/s, the depth of the water
10 m, sound velocity in the sediment cs = 1475 m/s, the burial depth in the sediment was 25 cm, the beam
width BW = 2o and nineteen steps each of ∆ = 0.02 m along track. The first scenario simulated considers the
free field while the next one simulates a muddy bottom. In the free field case we perform five experiments. In
the first experiment we consider a cylinder for which the compressional velocity is cc = 3100 m/s and then for
the second experiment cc = 2800 m/s. The target is assumed to be at a depth of 25 cm in water. The simulation
is performed in nineteen steps for seven classes. In order to obtain a supervised classification we use a training
data set of seventy vectors that correspond to ten odd steps for each of the seven classes. For the testing data set
we use sixty-three vectors from the other even nine steps. Each 3D feature vector is composed of the 3 largest
singular values. The performances of the various classifiers for the first four experiments are presented in Table
9.

Table 9. Classification accuracy for experiments 1 through 4 (target classification).

Accuracy Linear, [%] Accuracy Quadratic, [%] Accuracy Mahalanobis, [%]
Wigner Choi-Williams Wigner Choi-Williams Wigner Choi-Williams

Exp 1 71.4 82.25 100 100 100 100
Exp 2 74.6 57.1 100 100 100 100
Exp 3a 84.76 84.76 100 100 100 100
Exp 3b 82 80 100 100 100 100
Exp 3c 83 80 100 100 100 100
Exp 4a 82.62 87.62 100 100 100 100
Exp 4b 81.9 87.62 100 100 100 100
Exp 4c 81.9 85.71 97.14 100 97.14 100
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The quadratic and Mahalanobis based classifiers show similar high accuracies comparing to the linear based
classifier for both Wigner and Choi-Williams distributions. In the third experiment the classifiers were trained
with 105 vectors of data from the free field at a burial depth of 25 cm and then tested with an equal size set of
data corresponding for three burial depth conditions: 15 cm, 35 cm and 50 cm. The experimental results for the
three burial depths are presented in Table 9, Exp 3a, 3b and 3c. In the fourth experiment the variation of the
environmental conditions such as salinity, water temperature is reflected in the variation of the sound velocity
in water cw = 1520 m/s, 1535 m/s and 1550 m/s. The sound velocity in the water for the training data set
was 1500 m/s. The sizes of training and testing data sets are equal to 105 vectors. The experimental results are
shown in Table 9 , Exp 4a, 4b and 4c. The quadratic and Mahalanobis classifiers tested in free field presented
a very good robustness comparing to the linear classifier to the changes in the environmental conditions and
burial depth. The sensitivity of the algorithm with the target material was tested in experiment 5. In this
experiment, for the free field data the size of the training and testing data was 133 vectors. The target sound
velocity for the training data set was cc = 2800 m/s. We use the same depth and three different types of the
materials (corresponding to the sound velocities cc = 2775 m/s, 2750 m/s, and 2725 m/s) for the underwater
target in order to test the sensitivity to the target material. The experimental results are presented in Figure 2,
where the quadratic based classifier achieved the best accuracy for both Wigner and Choi-Williams distributions
comparing to the competing classification techniques. However, the quadratic classifier outperfoms by about 1 %
the Mahalanobis classifier. An evaluation of the proposed classification technique for targets buried in sediment
using free field target response data for training and mud target response data for testing are considered in the
experiments 6 and 7, where the buried cylinder (corresponding to cc = 2800 m/s ) is positioned at two different
depths: 15 cm and 25 cm, respectively. The classification results are illustrated in Figure 3 . Both the quadratic
and the Mahalanobis based classifiers show considerably higher accuracy than the linear classifier, for both the
Wigner and Choi-Williams distributions. The classification accuracy is higher for the Choi-Williams distribution
versus the Wigner distribution, and degrades as the burial depth increases.

The proposed classification method presented in this paper is based on feature extraction from a couple
of time-frequency distributions (Wigner and Choi-Williams) of the target impulse response. The discriminant
features for classification are the 3 most significant singular values of the time-frequency distribution. Three
classification approaches were employed each with a different discriminant function.

The quadratic and Mahalanobis based classifiers show, on average, similar accuracy but superior to the linear
classifier under various scenarios. High accuracy of the proposed method is obtained even when the environmental
conditions and the depth of the buried target are varied. An important characteristic of this method is that
good classification accuracy (around 75 % ) of an unknown target (of various materials and buried at various
depths) is achieved having only the response of a known target in the free field. A higher classification accuracy
is expected for larger differences in target sizes.

5. CONCLUSIONS

This paper is focused on developing an algorithm for seafloor bottom classification as well as for buried target
classification using acoustic backscattered signals. The novel approach for feature extraction is based on time-
frequency techniques that give a representation of the signal that lead to a good discrimination of the patterns.
The technique introduced in this work employs the Fractional Fourier Transform (FrFT) in order to compute
the impulse response. The FrFT is better suited for chirp sonar applications because it uses linear chirps as
basis functions; it has a great potential in sonar signal processing. The work also presents the classical method
for determining the bottom impulse response based on frequency domain deconvolution. The two methods are
tested and compared on real data collected by the Volume Search Sonar (VSS). The final classification into
sediment classes is based on singular value decomposition of the time-frequency distribution applied to the
impulse response obtained using the FrFT. The set of singular values represents the desired feature vectors that
describe the properties of the signal, and then a supervised classification is performed.

The authors’ recommendation for sediment classification is to use the combination FrFT/Wigner distribu-
tion/Mahalanobis discriminant function using two singular values as features. When only nadir beams are used
the classification accuracy is, again, higher than when central beams are used.
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Figure 2. Classification accuracy for experiment 5 (target classification).

Figure 3. Classification accuracy for experiments 6 and 7 (target classification).
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The performance of the proposed classification technique is evaluated on synthetic data sets, simulated for
buried targets detected by parametric sonar. Seven cylindrical targets with various diameters are considered in
several different testing scenarios. The method used for buried target classification is similar to that used for
sediment classification, but in this case the target impulse response is known (simulated). High accuracy of the
proposed method is obtained even when the environmental conditions and the depth of the buried target are
varied. An important characteristic of this method is that good classification accuracy of an unknown target (of
various materials and buried at various depths) is achieved having only the simulated response of a known target
in the free field. Higher classification accuracy is expected for targets with large difference in sizes (radius).

A recommended procedure for target classification is based on a combination of the Choi-Williams distribution
with either Mahalanobis or quadratic discriminant functions using the three highest singular values as features,
when the target impulse response is given.

In this work the authors develop a feature extraction method based on the FrFT and time-frequency represen-
tations that improve the performance of the acoustic seabed and buried target classification. The FrFT method
enhances the seafloor impulse response, and hence higher classification accuracy is achieved when used in com-
bination with Mahalanobis classifier. In addition, the novel proposed algorithm shows classification robustness
under various scenarios.
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